79 resultados para Commerce Motor Car Company
Resumo:
Manual dexterity, a prerogative of primates, is under the control of the corticospinal (CS) tract. Because 90-95% of CS axons decussate, it is assumed that this control is exerted essentially on the contralateral hand. Consistently, unilateral lesion of the hand representation in the motor cortex is followed by a complete loss of dexterity of the contralesional hand. During the months following lesion, spontaneous recovery of manual dexterity takes place to a highly variable extent across subjects, although largely incomplete. In the present study, we tested the hypothesis that after a significant postlesion period, manual performance in the ipsilesional hand is correlated with the extent of functional recovery in the contralesional hand. To this aim, ten adult macaque monkeys were subjected to permanent unilateral motor cortex lesion. Monkeys' manual performance was assessed for each hand during several months postlesion, using our standard behavioral test (modified Brinkman board task) that provides a quantitative measure of reach and grasp ability. The ipsilesional hand's performance was found to be significantly enhanced over the long term (100-300 days postlesion) in six of ten monkeys, with the six exhibiting the best, though incomplete, recovery of the contralesional hand. There was a statistically significant correlation (r = 0.932; P < 0.001) between performance in the ipsilesional hand after significant postlesion period and the extent of recovery of the contralesional hand. This observation is interpreted in terms of different possible mechanisms of recovery, dependent on the recruitment of motor areas in the lesioned and/or intact hemispheres.
Resumo:
BACKGROUND: The debate about a possible relationship between aerobic fitness and motor skills with cognitive development in children has recently re-emerged, because of the decrease in children's aerobic fitness and the concomitant pressure of schools to enhance cognitive performance. As the literature in young children is scarce, we examined the cross-sectional and longitudinal relationship of aerobic fitness and motor skills with spatial working memory and attention in preschool children. METHODS: Data from 245 ethnically diverse preschool children (mean age: 5.2 (0.6) years, girls: 49.4%) analyzed at baseline and 9 months later. Assessments included aerobic fitness (20 m shuttle run) and motor skills with agility (obstacle course) and dynamic balance (balance beam). Cognitive parameters included spatial working memory (IDS) and attention (KHV-VK). All analyses were adjusted for age, sex, BMI, migration status, parental education, native language and linguistic region. Longitudinal analyses were additionally adjusted for the respective baseline value. RESULTS: In the cross-sectional analysis, aerobic fitness was associated with better attention (r=0.16, p=0.03). A shorter time in the agility test was independently associated with a better performance both in working memory (r=-0.17, p=0.01) and in attention (r=-0.20, p=0.01). In the longitudinal analyses, baseline aerobic fitness was independently related to improvements in attention (r=0.16, p=0.03), while baseline dynamic balance was associated with improvements in working memory (r=0.15, p=0.04). CONCLUSIONS: In young children, higher baseline aerobic fitness and motor skills were related to a better spatial working memory and/or attention at baseline, and to some extent also to their future improvements over the following 9 months. TRIAL REGISTRATION: clinicaltrials.gov NCT00674544.
Resumo:
FtsK acts at the bacterial division septum to couple chromosome segregation with cell division. We demonstrate that a truncated FtsK derivative, FtsK(50C), uses ATP hydrolysis to translocate along duplex DNA as a multimer in vitro, consistent with FtsK having an in vivo role in pumping DNA through the closing division septum. FtsK(50C) also promotes a complete Xer recombination reaction between dif sites by switching the state of activity of the XerCD recombinases so that XerD makes the first pair of strand exchanges to form Holliday junctions that are then resolved by XerC. The reaction between directly repeated dif sites in circular DNA leads to the formation of uncatenated circles and is equivalent to the formation of chromosome monomers from dimers.
Resumo:
In this study, we compared a selective stop task (transition from a bimanual in-phase to a unimanual index fingers' tapping), with a non-selective stop task (stopping a bimanual in-phase tapping at all), and with a switching task (transition from in-phase to anti-phase bimanual tapping). The aim was twofold: 1) to identify the electro-cortical correlates of selective and non-selective inhibition processes and 2) to investigate which type of inhibition - selective or not - is required when switching between two bimanual motor patterns. The results revealed that all tasks led to enhanced activation (alpha power) of the left sensorimotor and posterior regions which seems to reflect an overall effort to stop the preferred bimanual in-phase tendency. Each task implied specific functional connectivity reorganizations (beta coherence) between cerebral motor areas, probably reflecting engagement in a new unimanual or bimanual movement.
Resumo:
BACKGROUND: Recombinant human insulin-like growth factor I (rhIGF-I) is a possible disease modifying therapy for amyotrophic lateral sclerosis (ALS, which is also known as motor neuron disease (MND)). OBJECTIVES: To examine the efficacy of rhIGF-I in affecting disease progression, impact on measures of functional health status, prolonging survival and delaying the use of surrogates (tracheostomy and mechanical ventilation) to sustain survival in ALS. Occurrence of adverse events was also reviewed. SEARCH METHODS: We searched the Cochrane Neuromuscular Disease Group Specialized Register (21 November 2011), CENTRAL (2011, Issue 4), MEDLINE (January 1966 to November 2011) and EMBASE (January 1980 to November 2011) and sought information from the authors of randomised clinical trials and manufacturers of rhIGF-I. SELECTION CRITERIA: We considered all randomised controlled clinical trials involving rhIGF-I treatment of adults with definite or probable ALS according to the El Escorial Criteria. The primary outcome measure was change in Appel Amyotrophic Lateral Sclerosis Rating Scale (AALSRS) total score after nine months of treatment and secondary outcome measures were change in AALSRS at 1, 2, 3, 4, 5, 6, 7, 8, 9 months, change in quality of life (Sickness Impact Profile scale), survival and adverse events. DATA COLLECTION AND ANALYSIS: Each author independently graded the risk of bias in the included studies. The lead author extracted data and the other authors checked them. We generated some missing data by making ruler measurements of data in published graphs. We collected data about adverse events from the included trials. MAIN RESULTS: We identified three randomised controlled trials (RCTs) of rhIGF-I, involving 779 participants, for inclusion in the analysis. In a European trial (183 participants) the mean difference (MD) in change in AALSRS total score after nine months was -3.30 (95% confidence interval (CI) -8.68 to 2.08). In a North American trial (266 participants), the MD after nine months was -6.00 (95% CI -10.99 to -1.01). The combined analysis from both RCTs showed a MD after nine months of -4.75 (95% CI -8.41 to -1.09), a significant difference in favour of the treated group. The secondary outcome measures showed non-significant trends favouring rhIGF-I. There was an increased risk of injection site reactions with rhIGF-I (risk ratio 1.26, 95% CI 1.04 to 1.54). . A second North American trial (330 participants) used a novel primary end point involving manual muscle strength testing. No differences were demonstrated between the treated and placebo groups in this study. All three trials were at high risk of bias. AUTHORS' CONCLUSIONS: Meta-analysis revealed a significant difference in favour of rhIGF-I treatment; however, the quality of the evidence from the two included trials was low. A third study showed no difference between treatment and placebo. There is no evidence for increase in survival with IGF1. All three included trials were at high risk of bias.
Resumo:
The capacity to learn to associate sensory perceptions with appropriate motor actions underlies the success of many animal species, from insects to humans. The evolutionary significance of learning has long been a subject of interest for evolutionary biologists who emphasize the bene¬fit yielded by learning under changing environmental conditions, where it is required to flexibly switch from one behavior to another. However, two unsolved questions are particularly impor¬tant for improving our knowledge of the evolutionary advantages provided by learning, and are addressed in the present work. First, because it is possible to learn the wrong behavior when a task is too complex, the learning rules and their underlying psychological characteristics that generate truly adaptive behavior must be identified with greater precision, and must be linked to the specific ecological problems faced by each species. A framework for predicting behavior from the definition of a learning rule is developed here. Learning rules capture cognitive features such as the tendency to explore, or the ability to infer rewards associated to unchosen actions. It is shown that these features interact in a non-intuitive way to generate adaptive behavior in social interactions where individuals affect each other's fitness. Such behavioral predictions are used in an evolutionary model to demonstrate that, surprisingly, simple trial-and-error learn¬ing is not always outcompeted by more computationally demanding inference-based learning, when population members interact in pairwise social interactions. A second question in the evolution of learning is its link with and relative advantage compared to other simpler forms of phenotypic plasticity. After providing a conceptual clarification on the distinction between genetically determined vs. learned responses to environmental stimuli, a new factor in the evo¬lution of learning is proposed: environmental complexity. A simple mathematical model shows that a measure of environmental complexity, the number of possible stimuli in one's environ¬ment, is critical for the evolution of learning. In conclusion, this work opens roads for modeling interactions between evolving species and their environment in order to predict how natural se¬lection shapes animals' cognitive abilities. - La capacité d'apprendre à associer des sensations perceptives à des actions motrices appropriées est sous-jacente au succès évolutif de nombreuses espèces, depuis les insectes jusqu'aux êtres hu¬mains. L'importance évolutive de l'apprentissage est depuis longtemps un sujet d'intérêt pour les biologistes de l'évolution, et ces derniers mettent l'accent sur le bénéfice de l'apprentissage lorsque les conditions environnementales sont changeantes, car dans ce cas il est nécessaire de passer de manière flexible d'un comportement à l'autre. Cependant, deux questions non résolues sont importantes afin d'améliorer notre savoir quant aux avantages évolutifs procurés par l'apprentissage. Premièrement, puisqu'il est possible d'apprendre un comportement incorrect quand une tâche est trop complexe, les règles d'apprentissage qui permettent d'atteindre un com¬portement réellement adaptatif doivent être identifiées avec une plus grande précision, et doivent être mises en relation avec les problèmes écologiques spécifiques rencontrés par chaque espèce. Un cadre théorique ayant pour but de prédire le comportement à partir de la définition d'une règle d'apprentissage est développé ici. Il est démontré que les caractéristiques cognitives, telles que la tendance à explorer ou la capacité d'inférer les récompenses liées à des actions non ex¬périmentées, interagissent de manière non-intuitive dans les interactions sociales pour produire des comportements adaptatifs. Ces prédictions comportementales sont utilisées dans un modèle évolutif afin de démontrer que, de manière surprenante, l'apprentissage simple par essai-et-erreur n'est pas toujours battu par l'apprentissage basé sur l'inférence qui est pourtant plus exigeant en puissance de calcul, lorsque les membres d'une population interagissent socialement par pair. Une deuxième question quant à l'évolution de l'apprentissage concerne son lien et son avantage relatif vis-à-vis d'autres formes plus simples de plasticité phénotypique. Après avoir clarifié la distinction entre réponses aux stimuli génétiquement déterminées ou apprises, un nouveau fac¬teur favorisant l'évolution de l'apprentissage est proposé : la complexité environnementale. Un modèle mathématique permet de montrer qu'une mesure de la complexité environnementale - le nombre de stimuli rencontrés dans l'environnement - a un rôle fondamental pour l'évolution de l'apprentissage. En conclusion, ce travail ouvre de nombreuses perspectives quant à la mo¬délisation des interactions entre les espèces en évolution et leur environnement, dans le but de comprendre comment la sélection naturelle façonne les capacités cognitives des animaux.
Resumo:
Optimum management of non-acquired neuromuscular disorders requires a multidisciplinary approach in order to prevent secondary complications related to the progression of the disease and to maintain the patient's independency in daily activities. For treatments, the physiotherapists and occupational therapists must have precise and measurable goals to quantify muscle strength and functions in conjunction with a specialist in neurorehabilitation. Examples of simple motor scores or scales are given in order to transmit precise information to the GP and the multidisciplinary team, and type of orthosis and physiotherapy programmes are given as pieces of advice to assume the follow-up of patients.
Resumo:
BACKGROUND: After sub-total hemi-section of cervical cord at level C7/C8 in monkeys, the ipsilesional hand exhibited a paralysis for a couple of weeks, followed by incomplete recovery of manual dexterity, reaching a plateau after 40-50 days. Recently, we demonstrated that the level of the plateau was related to the size of the lesion and that progressive plastic changes of the motor map in the contralesional motor cortex, particularly the hand representation, took place following a comparable time course. The goal of the present study was to assess, in three macaque monkeys, whether the hand representation in the ipsilesional primary motor cortex (M1) was also affected by the cervical hemi-section.¦RESULTS: Unexpectedly, based on the minor contribution of the ipsilesional hemisphere to the transected corticospinal (CS) tract, a considerable reduction of the hand representation was also observed in the ipsilesional M1. Mapping control experiments ruled out the possibility that changes of motor maps are due to variability of the intracortical microstimulation mapping technique. The extent of the size reduction of the hand area was nearly as large as in the contralesional hemisphere in two of the three monkeys. In the third monkey, it represented a reduction by a factor of half the change observed in the contralesional hemisphere. Although the hand representation was modified in the ipsilesional hemisphere, such changes were not correlated with a contribution of this hemisphere to the incomplete recovery of the manual dexterity for the hand affected by the lesion, as demonstrated by reversible inactivation experiments (in contrast to the contralesional hemisphere). Moreover, despite the size reduction of M1 hand area in the ipsilesional hemisphere, no deficit of manual dexterity for the hand opposite to the cervical hemi-section was detected.¦CONCLUSION: After cervical hemi-section, the ipsilesional motor cortex exhibited substantial reduction of the hand representation, whose extent did not match the small number of axotomized CS neurons. We hypothesized that the paradoxical reduction of hand representation in the ipsilesional hemisphere is secondary to the changes taking place in the contralesional hemisphere, possibly corresponding to postural adjustments and/or re-establishing a balance between the two hemispheres.
Resumo:
With aging, bimanual movements are performed with increased cerebral activity in frontal and parietal areas. In contrast, motor switching is poorly documented and is expected to engage increasing resources in the elderly. In this study, spontaneous electroencephalographic activity (EEG) was recorded while 39 young participants (YP) and 37 elderly (EP) performed motor transitions from unimanual tapping to symmetric bimanual tapping (= Activation), and opposite (= Inhibition). We measured the delay of switching using the mean and standard deviation of transition time (meanTT and sdTT). Task-related power (TRPow) in alpha frequency band (8-12Hz) was used to measure electro-cortical changes, negative values corresponding to increased cerebral activity. A balance index (BI) was computed between frontal and parietal regions, values non-significantly different from "zero" representing a comparable level of cerebral activity in these regions. The results reveal higher sdTT 1) in EP compared to YP in both transitions, 2) in Activation compared to Inhibition in both groups. TRPow tends to reach greater negative values (p=0.052) in EP compared to YP in both tapping modes and both motor transitions. Furthermore, the results show more negative TRPow 1) in both motor transitions compared to the tapping movements and 2) in frontal region for YP compared to EP during Inhibition only. BI values differ significantly from "zero" for YP in Inhibition only. In conclusion, motor transitions are more variable and tend to be resource-consuming in the elderly. Moreover, the cerebral activity spreading in EP characterized by similar level of activity between frontal and parietal regions suggest reduced capacity to recruit specialized neural mechanisms during motor inhibition.