58 resultados para Cartesian coordinates
Resumo:
The NLRP3 inflammasome acts as a danger signal sensor that triggers and coordinates the inflammatory response upon infectious insults or tissue injury and damage. However, the role of the NLRP3 inflammasome in natural killer (NK) cell-mediated control of tumor immunity is poorly understood. Here, we show in a model of chemical-induced carcinogenesis and a series of experimental and spontaneous metastases models that mice lacking NLRP3 display significantly reduced tumor burden than control wild-type (WT) mice. The suppression of spontaneous and experimental tumor metastases and methylcholanthrene (MCA)-induced sarcomas in mice deficient for NLRP3 was NK cell and IFN-γ-dependent. Focusing on the amenable B16F10 experimental lung metastases model, we determined that expression of NLRP3 in bone marrow-derived cells was necessary for optimal tumor metastasis. Tumor-driven expansion of CD11b(+)Gr-1(intermediate) (Gr-1(int)) myeloid cells within the lung tumor microenvironment of NLRP3(-/-) mice was coincident with increased lung infiltrating activated NK cells and an enhanced antimetastatic response. The CD11b(+)Gr-1(int) myeloid cells displayed a unique cell surface phenotype and were characterized by their elevated production of CCL5 and CXCL9 chemokines. Adoptive transfer of this population into WT mice enhanced NK cell numbers in, and suppression of, B16F10 lung metastases. Together, these data suggested that NLRP3 is an important suppressor of NK cell-mediated control of carcinogenesis and metastases and identify CD11b(+)Gr-1(int) myeloid cells that promote NK cell antimetastatic function. Cancer Res; 72(22); 5721-32. ©2012 AACR.
Resumo:
The aim of this study is to investigate the influence of unusual writing positions on a person's signature, in comparison to a standard writing position. Ten writers were asked to sign their signature six times, in each of four different writing positions, including the standard one. In order to take into consideration the effect of the day-to-day variation, this same process was repeated over 12 sessions, giving a total of 288 signatures per subject. The signatures were collected simultaneously in an off-line and on-line acquisition mode, using an interactive tablet and a ballpoint pen. Unidimensional variables (height to width ratio; time with or without in air displacement) and time-dependent variables (pressure; X and Y coordinates; altitude and azimuth angles) were extracted from each signature. For the unidimensional variables, the position effect was assessed through ANOVA and Dunnett contrast tests. Concerning the time-dependent variables, the signatures were compared by using dynamic time warping, and the position effect was evaluated through classification by linear discriminant analysis. Both of these variables provided similar results: no general tendency regarding the position factor could be highlighted. The influence of the position factor varies according to the subject as well as the variable studied. The impact of the session factor was shown to cover the impact that could be ascribed to the writing position factor. Indeed, the day-to-day variation has a greater effect than the position factor on the studied signature variables. The results of this study suggest guidelines for best practice in the area of signature comparisons and demonstrate the importance of a signature collection procedure covering an adequate number of sampling sessions, with a sufficient number of samples per session.
Resumo:
Healing of cutaneous wounds, which is crucial for survival after an injury, proceeds via a well-tuned pattern of events including inflammation, re-epithelialisation, and matrix and tissue remodelling. These events are regulated spatio-temporally by a variety of growth factors and cytokines. The inflammation that immediately follows injury increases the expression of peroxisome proliferator-activated receptor (PPAR)-beta in the wound edge keratinocytes and triggers the production of endogenous PPARbeta ligands that activate the newly produced receptor. This elevated PPARbeta activity results in increased resistance of the keratinocytes to the apoptotic signals released during wounding, allowing faster re-epithelialisation. The authors speculate that, in parallel, ligand activation of PPARbeta in infiltrated macrophages attenuates the inflammatory response, which also promotes repair. Thus, current understanding of the roles of PPARbeta in different cell types implicated in tissue repair has revealed an intriguing intercellular cross-talk that coordinates, spatially and temporally, inflammation, keratinocyte survival, proliferation and migration, which are all essential for efficient wound repair. These novel insights into the orchestrating roles of PPARbeta during wound healing may be helpful in the development of drugs for acute and chronic wound disorders.
Resumo:
RESUME Les améliorations méthodologiques des dernières décennies ont permis une meilleure compréhension de la motilité gastro-intestinale. Il manque toutefois une méthode qui permette de suivre la progression du chyme le long du tube gastro-intestinal. Pour permettre l'étude de la motilité de tout le tractus digestif humain, une nouvelle technique, peu invasive, a été élaborée au Département de Physiologie, en collaboration avec l'EPFL. Appelée "Magnet Tracking", la technique est basée sur la détection du champ magnétique généré par des matériaux ferromagnétiques avalés. A cet usage, une pilule magnétique, une matrice de capteurs et un logiciel ont été développés. L'objet de ce travail est de démontrer la faisabilité d'un examen de la motilité gastro-intestinale chez l'Homme par cette méthode. L'aimant est un cylindre (ø 6x7 mm, 0.2 cm3) protégé par une gaine de silicone. Le système de mesure est constitué d'une matrice de 4x4 capteurs et d'un ordinateur portable. Les capteurs fonctionnent sur l'effet Hall. Grâce à l'interface informatique, l'évolution de la position de l'aimant est suivie en temps réel à travers tout le tractus digestif. Sa position est exprimée en fonction du temps ou reproduite en 3-D sous forme d'une trajectoire. Différents programmes ont été crées pour analyser la dynamique des mouvements de l'aimant et caractériser la motilité digestive. Dix jeunes volontaires en bonne santé ont participé à l'étude. L'aimant a été avalé après une nuit de jeûne et son séjour intra digestif suivi pendant 2 jours consécutifs. Le temps moyen de mesure était de 34 heures. Chaque sujet a été examiné une fois sauf un qui a répété sept fois l'expérience. Les sujets restaient en décubitus dorsal, tranquilles et pouvaient interrompre la mesure s'ils le désiraient. Ils sont restés à jeûne le premier jour. L'évacuation de l'aimant a été contrôlée chez tous les sujets. Tous les sujets ont bien supporté l'examen. Le marqueur a pu être détecté de l'oesophage au rectum. La trajectoire ainsi constituée représente une conformation de l'anatomie digestive : une bonne superposition de celle-ci à l'anatomie est obtenue à partir des images de radiologie conventionnelle (CT-scan, lavement à la gastrografine). Les mouvements de l'aimant ont été caractérisés selon leur périodicité, leur amplitude ou leur vitesse pour chaque segment du tractus digestif. Ces informations physiologiques sont bien corrélées à celles obtenues par des méthodes établies d'étude de la motilité gastro-intestinale. Ce travail démontre la faisabilité d'un examen de la motilité gastro-intestinal chez l'Homme par la méthode de Magnet Tracking. La technique fournit les données anatomiques et permet d'analyser en temps réel la dynamique des mouvements du tube digestif. Cette méthode peu invasive ouvre d'intéressantes perspectives pour l'étude de motilité dans des conditions physiologiques et pathologiques. Des expériences visant à valider cette approche en tant que méthode clinique sont en voie de réalisation dans plusieurs centres en Suisse et à l'étranger. SUMMARY Methodological improvements realised over the last decades have permitted a better understanding of gastrointestinal motility. Nevertheless, a method allowing a continuous following of lumina' contents is still lacking. In order to study the human digestive tract motility, a new minimally invasive technique was developed at the Department of Physiology in collaboration with Swiss Federal Institute of Technology. The method is based on the detection of magnetic field generated by swallowed ferromagnetic materials. The aim of our work was to demonstrate the feasibility of this new approach to study the human gastrointestinal motility. The magnet used was a cylinder (ø6x7mm, 0.2 cm3) coated with silicon. The magnet tracking system consisted of a 4x4 matrix of sensors based on the Hall effect Signals from the sensors were digitised and sent to a laptop computer for processing and storage. Specific software was conceived to analyse in real time the progression of the magnet through the gastrointestinal tube. Ten young and healthy volunteers were enrolled in the study. After a fasting period of 12 hours, they swallowed the magnet. The pill was then tracked for two consecutive days for 34 hours on average. Each subject was studied once except one who was studied seven times. Every subject laid on his back for the entire experiment but could interrupt it at anytime. Evacuation of the magnet was controlled in all subjects. The examination was well tolerated. The pill could be followed from the esophagus to the rectum. The trajectory of the magnet represented a "mould" of the anatomy of the digestive tube: a good superimposition with radiological anatomy (gastrografin contrast and CT) was obtained. Movements of the magnet were characterized by periodicity, velocity, and amplitude of displacements for every segment of the digestive tract. The physiological information corresponded well to data from current methods of studying gastrointestinal motility. This work demonstrates the feasibility of the new approach in studies of human gastrointestinal motility. The technique allows to correlate in real time the dynamics of digestive movements with the anatomical data. This minimally invasive method is ready for studies of human gastrointestinal motility under physiological as well as pathological conditions. Studies aiming at validation of this new approach as a clinically relevant tool are being realised in several centres in Switzerland and abroad. Abstract: A new minimally invasive technique allowing for anatomical mapping and motility studies along the entire human digestive system is presented. The technique is based on continuous tracking of a small magnet progressing through the digestive tract. The coordinates of the magnet are calculated from signals recorded by 16 magnetic field sensors located over the abdomen. The magnet position, orientation and trajectory are displayed in real time. Ten young healthy volunteers were followed during 34 h. The technique was well tolerated and no complication was encountered, The information obtained was 3-D con-figuration of the digestive tract and dynamics of the magnet displacement (velocity, transit time, length estimation, rhythms). In the same individual, repea-ted examination gave very reproducible results. The anatomical and physiological information obtained corresponded well to data from current methods and imaging. This simple, minimally invasive technique permits examination of the entire digestive tract and is suitable for both research and clinical studies. In combination with other methods, it may represent a useful tool for studies of Cl motility with respect to normal and pathological conditions.
Resumo:
The impact of radial k-space sampling and water-selective excitation on a novel navigator-gated cardiac-triggered slab-selective inversion prepared 3D steady-state free-precession (SSFP) renal MR angiography (MRA) sequence was investigated. Renal MRA was performed on a 1.5-T MR system using three inversion prepared SSFP approaches: Cartesian (TR/TE: 5.7/2.8 ms, FA: 85 degrees), radial (TR/TE: 5.5/2.7 ms, FA: 85 degrees) SSFP, and radial SSFP combined with water-selective excitation (TR/TE: 9.9/4.9 ms, FA: 85 degrees). Radial data acquisition lead to significantly reduced motion artifacts (P < 0.05). SNR and CNR were best using Cartesian SSFP (P < 0.05). Vessel sharpness and vessel length were comparable in all sequences. The addition of a water-selective excitation could not improve image quality. In conclusion, radial k-space sampling reduces motion artifacts significantly in slab-selective inversion prepared renal MRA, while SNR and CNR are decreased. The addition of water-selective excitation could not improve the lower CNR in radial scanning.
Resumo:
Introduction: Neuroimaging of the self focused on high-level mechanisms such as language, memory or imagery of the self. Recent evidence suggests that low-level mechanisms of multisensory and sensorimotor integration may play a fundamental role in encoding self-location and the first-person perspective (Blanke and Metzinger, 2009). Neurological patients with out-of body experiences (OBE) suffer from abnormal self-location and the first-person perspective due to a damage in the temporo-parietal junction (Blanke et al., 2004). Although self-location and the first-person perspective can be studied experimentally (Lenggenhager et al., 2009), the neural underpinnings of self-location have yet to be investigated. To investigate the brain network involved in self-location and first-person perspective we used visuo-tactile multisensory conflict, magnetic resonance (MR)-compatible robotics, and fMRI in study 1, and lesion analysis in a sample of 9 patients with OBE due to focal brain damage in study 2. Methods: Twenty-two participants saw a video showing either a person's back or an empty room being stroked (visual stimuli) while the MR-compatible robotic device stroked their back (tactile stimulation). Direction and speed of the seen stroking could either correspond (synchronous) or not (asynchronous) to those of the seen stroking. Each run comprised the four conditions according to a 2x2 factorial design with Object (Body, No-Body) and Synchrony (Synchronous, Asynchronous) as main factors. Self-location was estimated using the mental ball dropping (MBD; Lenggenhager et al., 2009). After the fMRI session participants completed a 6-item adapted from the original questionnaire created by Botvinick and Cohen (1998) and based on questions and data obtained by Lenggenhager et al. (2007, 2009). They were also asked to complete a questionnaire to disclose the perspective they adopted during the illusion. Response times (RTs) for the MBD and fMRI data were analyzed with a 3-way mixed model ANOVA with the in-between factor Perspective (up, down) and the two with-in factors Object (body, no-body) and Stroking (synchronous, asynchronous). Quantitative lesion analysis was performed using MRIcron (Rorden et al., 2007). We compared the distributions of brain lesions confirmed by multimodality imaging (Knowlton, 2004) in patients with OBE with those showing complex visual hallucinations involving people or faces, but without any disturbance of self-location and first person perspective. Nine patients with OBE were investigated. The control group comprised 8 patients. Structural imaging data were available for normalization and co-registration in all the patients. Normalization of each patient's lesion into the common MNI (Montreal Neurological Institute) reference space permitted simple, voxel-wise, algebraic comparisons to be made. Results: Even if in the scanner all participants were lying on their back and were facing upwards, analysis of perspective showed that half of the participants had the impression to be looking down at the virtual human body below them, despite any cues about their body position (Down-group). The other participants had the impression to be looking up at the virtual body above them (Up-group). Analysis of Q3 ("How strong was the feeling that the body you saw was you?") indicated stronger self-identification with the virtual body during the synchronous stroking. RTs in the MBD task confirmed these subjective data (significant 3-way interaction between perspective, object and stroking). fMRI results showed eight cortical regions where the BOLD signal was significantly different during at least one of the conditions resulting from the combination of Object and Stroking, relative to baseline: right and left temporo-parietal junction, right EBA, left middle occipito-temporal gyrus, left postcentral gyrus, right medial parietal lobe, bilateral medial occipital lobe (Fig 1). The activation patterns in right and left temporo-parietal junction and right EBA reflected changes in self-location and perspective as revealed by statistical analysis that was performed on the percentage of BOLD change with respect to the baseline. Statistical lesion overlap comparison (using nonparametric voxel based lesion symptom mapping) with respect to the control group revealed the right temporo-parietal junction, centered at the angular gyrus (Talairach coordinates x = 54, y =-52, z = 26; p>0.05, FDR corrected). Conclusions: The present questionnaire and behavioural results show that - despite the noisy and constraining MR environment) our participants had predictable changes in self-location, self-identification, and first-person perspective when robotic tactile stroking was applied synchronously with the robotic visual stroking. fMRI data in healthy participants and lesion data in patients with abnormal self-location and first-person perspective jointly revealed that the temporo-parietal cortex especially in the right hemisphere encodes these conscious experiences. We argue that temporo-parietal activity reflects the experience of the conscious "I" as embodied and localized within bodily space.
Resumo:
In insects, the steroid hormone 20-hydroxyecdysone (20E) coordinates major developmental transitions. While the first and the final steps of 20E biosynthesis are characterized, the pathway from 7-dehydrocholesterol to 5β-ketodiol, commonly referred as the "black box", remains hypothetical and whether there are still unidentified enzymes is unknown. The black box would include some oxidative steps, which are believed to be mediated by P450 enzymes. To identify new enzyme(s) involved in steroid synthesis, we analyzed by small-scale microarray the expression of all the genes encoding P450 enzymes of the malaria mosquito Anopheles gambiae in active steroidogenic organs of adults, ovaries from blood-fed females and male reproductive tracts, compared to inactive steroidogenic organs, ovaries from non-blood-fed females. Some genes encoding P450 enzymes were specifically overexpressed in female ovaries after a blood-meal or in male reproductive tracts but only three genes were found to be overexpressed in active steroidogenic organs of both females and males: cyp307a1, cyp4g16 and cyp6n1. Among these genes, only cyp307a1 has an expression pattern similar to other mosquito steroidogenic genes. Moreover, loss-of-function by transient RNAi targeting cyp307a1 disrupted ecdysteroid production demonstrating that this gene is required for ecdysteroid biosynthesis in Anopheles gambiae.
Resumo:
The three-dimensional (3D) correction of glenoid erosion is critical to the long-term success of total shoulder replacement (TSR). In order to characterise the 3D morphology of eroded glenoid surfaces, we looked for a set of morphological parameters useful for TSR planning. We defined a scapular coordinates system based on non-eroded bony landmarks. The maximum glenoid version was measured and specified in 3D by its orientation angle. Medialisation was considered relative to the spino-glenoid notch. We analysed regular CT scans of 19 normal (N) and 86 osteoarthritic (OA) scapulae. When the maximum version of OA shoulders was higher than 10°, the orientation was not only posterior, but extended in postero-superior (35%), postero-inferior (6%) and anterior sectors (4%). The medialisation of the glenoid was higher in OA than normal shoulders. The orientation angle of maximum version appeared as a critical parameter to specify the glenoid shape in 3D. It will be very useful in planning the best position for the glenoid in TSR.
Resumo:
PURPOSE: Most existing methods for accelerated parallel imaging in MRI require additional data, which are used to derive information about the sensitivity profile of each radiofrequency (RF) channel. In this work, a method is presented to avoid the acquisition of separate coil calibration data for accelerated Cartesian trajectories. METHODS: Quadratic phase is imparted to the image to spread the signals in k-space (aka phase scrambling). By rewriting the Fourier transform as a convolution operation, a window can be introduced to the convolved chirp function, allowing a low-resolution image to be reconstructed from phase-scrambled data without prominent aliasing. This image (for each RF channel) can be used to derive coil sensitivities to drive existing parallel imaging techniques. As a proof of concept, the quadratic phase was applied by introducing an offset to the x(2) - y(2) shim and the data were reconstructed using adapted versions of the image space-based sensitivity encoding and GeneRalized Autocalibrating Partially Parallel Acquisitions algorithms. RESULTS: The method is demonstrated in a phantom (1 × 2, 1 × 3, and 2 × 2 acceleration) and in vivo (2 × 2 acceleration) using a 3D gradient echo acquisition. CONCLUSION: Phase scrambling can be used to perform parallel imaging acceleration without acquisition of separate coil calibration data, demonstrated here for a 3D-Cartesian trajectory. Further research is required to prove the applicability to other 2D and 3D sampling schemes. Magn Reson Med, 2014. © 2014 Wiley Periodicals, Inc.
Resumo:
OBJECT: To study a scan protocol for coronary magnetic resonance angiography based on multiple breath-holds featuring 1D motion compensation and to compare the resulting image quality to a navigator-gated free-breathing acquisition. Image reconstruction was performed using L1 regularized iterative SENSE. MATERIALS AND METHODS: The effects of respiratory motion on the Cartesian sampling scheme were minimized by performing data acquisition in multiple breath-holds. During the scan, repetitive readouts through a k-space center were used to detect and correct the respiratory displacement of the heart by exploiting the self-navigation principle in image reconstruction. In vivo experiments were performed in nine healthy volunteers and the resulting image quality was compared to a navigator-gated reference in terms of vessel length and sharpness. RESULTS: Acquisition in breath-hold is an effective method to reduce the scan time by more than 30 % compared to the navigator-gated reference. Although an equivalent mean image quality with respect to the reference was achieved with the proposed method, the 1D motion compensation did not work equally well in all cases. CONCLUSION: In general, the image quality scaled with the robustness of the motion compensation. Nevertheless, the featured setup provides a positive basis for future extension with more advanced motion compensation methods.
Resumo:
Closely related species may be very difficult to distinguish morphologically, yet sometimes morphology is the only reasonable possibility for taxonomic classification. Here we present learning-vector-quantization artificial neural networks as a powerful tool to classify specimens on the basis of geometric morphometric shape measurements. As an example, we trained a neural network to distinguish between field and root voles from Procrustes transformed landmark coordinates on the dorsal side of the skull, which is so similar in these two species that the human eye cannot make this distinction. Properly trained neural networks misclassified only 3% of specimens. Therefore, we conclude that the capacity of learning vector quantization neural networks to analyse spatial coordinates is a powerful tool among the range of pattern recognition procedures that is available to employ the information content of geometric morphometrics.
Resumo:
Inflammation is a local immune response to 'foreign' molecules, infection and injury. Leukotriene B4, a potent chemotactic agent that initiates, coordinates, sustains and amplifies the inflammatory response, is shown to be an activating ligand for the transcription factor PPARalpha. Because PPARalpha regulates the oxidative degradation of fatty acids and their derivatives, like this lipid mediator, a feedback mechanism is proposed that controls the duration of an inflammatory response and the clearance of leukotriene B4 in the liver. Thus PPARalpha offers a new route to the development of anti- or pro-inflammatory reagents.
Resumo:
PURPOSE: To report feasibility and potential benefits of high-frequency jet ventilation (HFJV) in tumor ablations techniques in liver, kidney, and lung lesions. METHODS: This prospective study included 51 patients (14 women, mean age 66 years) bearing 66 tumors (56 hepatic, 5 pulmonary, 5 renal tumors) with a median size of 16 ± 8.7 mm, referred for tumor ablation in an intention-to-treat fashion before preoperative anesthesiology visit. Cancellation and complications of HFJV were prospectively recorded. Anesthesia and procedure duration, as well as mean CO2 capnea, were recorded. When computed tomography guidance was used, 3D spacial coordinates of an anatomical target <2 mm in diameter on 8 slabs of 4 slices of 3.75-mm slice thickness were registered. RESULTS: HFJV was used in 41 of 51 patients. Of the ten patients who were not candidate for HFJV, two patients had contraindication to HFJV (severe COPD), three had lesions invisible under HFJV requiring deep inspiration apnea for tumor targeting, and five patients could not have HFJV because of unavailability of a trained anesthetic team. No specific complication or hypercapnia related to HFJV were observed despite a mean anesthetic duration of 2 h and ventilation performed in procubitus (n = 4) or lateral decubitus (n = 6). Measured internal target movement was 0.3 mm in x- and y-axis and below the slice thickness of 3.75 mm in the z-axis in 11 patients. CONCLUSIONS: HFJV is feasible in 80 % of patients allowing for near immobility of internal organs during liver, kidney, and lung tumor ablation.
Resumo:
Genetic experiments established that p63 is crucial for the development and maintenance of pluristratified epithelia. In the RNA interference (RNAi) screening for targets of p63 in keratinocytes, we identified the transcription factor, High Mobility Group (HMG) box protein 1 (HBP1). HBP1 is an HMG-containing repressor transiently induced during differentiation of several cell lineages. We investigated the relationship between the two factors: using RNAi, overexpression, chromatin immunoprecipitations and transient transfections with reporter constructs, we established that HBP1 is directly repressed by p63. This was further confirmed in vivo by evaluating expression in p63 knockout mice and in transgenics expressing p63 in basal keratinocytes. Consistent with these findings, expression of HBP1 increases upon differentiation of primary keratinocytes and HaCaT cells in culture, and it is higher in the upper layers of human skin. Inactivation of HBP1 by RNAi prevents differentiation of keratinocytes and stratification of organotypic skin cultures. Finally, we analyzed the keratinocyte transcriptomes after HBP1 RNAi; in addition to repression of growth-promoting genes, unexpected activation of differentiation genes was uncovered, coexisting with repression of other genes involved in epithelial cornification. Our data indicate that suppression of HBP1 is part of the growth-promoting strategy of p63 in the lower layers of epidermis and that HBP1 temporally coordinates expression of genes involved in stratification, leading to the formation of the skin barrier.