73 resultados para Buildings Repair and reconstruction -- Catalunya -- Barcelona


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In eukaryotes, homologous recombination proteins such as RAD51 and RAD52 play crucial roles in DNA repair and genome stability. Human RAD52 is a member of a large single-strand annealing protein (SSAP) family [1] and stimulates Rad51-dependent recombination [2, 3]. In prokaryotes and phages, it has been difficult to establish the presence of RAD52 homologs with conserved sequences. Putative SSAPs were recently found in several phages that infect strains of Lactococcus lactis[4]. One of these SSAPs was identified as Sak and was found in the virulent L. lactis phage ul36, which belongs to the Siphoviridae family [4, 5]. In this study, we show that Sak is homologous to the N terminus of human RAD52. Purified Sak binds single-stranded DNA (ssDNA) preferentially over double-stranded DNA (dsDNA) and promotes the renaturation of long complementary ssDNAs. Sak also binds RecA and stimulates homologous recombination reactions. Mutations shown to modulate RAD52 DNA binding [6] affect Sak similarly. Remarkably, electron-microscopic reconstruction of Sak reveals an undecameric (11) subunit ring, similar to the crystal structure of the N-terminal fragment of human RAD52 [7, 8]. For the first time, we propose a viral homolog of RAD52 at the amino acid, phylogenic, functional, and structural levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tissue damage resulting from chemical, mechanical, and biological injury, or from interrupted blood flow and reperfusion, is often life threatening. The subsequent tissue response involves an intricate series of events including inflammation, oxidative stress, immune cell recruitment, and cell survival, proliferation, migration, and differentiation. In addition, fibrotic repair characterized by myofibroblast transdifferentiation and the deposition of ECM proteins is activated. Failure to initiate, maintain, or stop this repair program has dramatic consequences, such as cell death and associated tissue necrosis or carcinogenesis. In this sense, inflammation and oxidative stress, which are beneficial defense processes, can become harmful if they do not resolve in time. This repair program is largely based on rapid and specific changes in gene expression controlled by transcription factors that sense injury. PPARs are such factors and are activated by lipid mediators produced after wounding. Here we highlight advances in our understanding of PPAR action during tissue repair and discuss the potential for these nuclear receptors as therapeutic targets for tissue injury.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT: BACKGROUND: Many studies have been published outlining the global effects of 17 beta-estradiol (E2) on gene expression in human epithelial breast cancer derived MCF-7 cells. These studies show large variation in results, reporting between ~100 and ~1500 genes regulated by E2, with poor overlap. RESULTS: We performed a meta-analysis of these expression studies, using the Rank product method to obtain a more accurate and stable list of the differentially expressed genes, and of pathways regulated by E2. We analyzed 9 time-series data sets, concentrating on response at 3-4 hrs (early) and at 24 hrs (late). We found >1000 statistically significant probe sets after correction for multiple testing at 3-4 hrs, and >2000 significant probe sets at 24 hrs. Differentially expressed genes were examined by pathway analysis. This revealed 15 early response pathways, mostly related to cell signaling and proliferation, and 20 late response pathways, mostly related to breast cancer, cell division, DNA repair and recombination. CONCLUSIONS: Our results show that meta-analysis identified more differentially expressed genes than the individual studies, and that these genes act together in networks. These results provide new insight into E2 regulated mechanisms, especially in the context of breast cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Primary bone sarcomas around the ankle are rare. Due to the proximity of neurovascular structures and limited soft tissue reserves, limb salvage is often not possible. Case report: A 19 yo male presented with pain and a progressive swelling of his ankle. X-rays revealed cortical erosions and an extensive periosteal reaction (sunburst) of the distal fibula. MRI showed a large mass of the fibula invading adjacent soft tissue. The lesion appeared close to the ankle joint, but with the articular cartilage as a barrier and without joint effusion. Core-needle biopsy revealed a high-grade chondroblastic osteosarcoma. No metastases were detected. After presentation at our multidisciplinary sarcoma board, the patient was subjected to neo-adjuvant chemotherapy (AOST 03-331). Without any sign of intra-articular contamination of the ankle joint, surgical treatment consisted of wide resection of the lateral malleolus including a large skin patch, the distal third of the fibula, the lateral surfaces of the tibia and talus as well as the insertion of the lateral ligament on the calcaneus. The distal parts of the anterior, peroneal, and posterior muscular compartments were resected en bloc with the tumor. The defect was reconstructed with tibio-talar and talo-calcanear fusion, bony allograft and a plate. Soft-tissue coverage was achieved with a free fascio-cutaneous flap from the controlateral thigh. Histological analysis revealed clear margins and 50% of tumor necrosis. The oncologic treatment was completed with adjuvant chemotherapy. Conclusion: Wide resection and reconstruction of the lateral malleolus is technically demanding but possible in selected cases. Despite some important functional loss, limb salvage is superior to an amputation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In vertebrates, the RAD51 protein is required for genetic recombination, DNA repair, and cellular proliferation. Five paralogs of RAD51, known as RAD51B, RAD51C, RAD51D, XRCC2, and XRCC3, have been identified and also shown to be required for recombination and genome stability. At the present time, however, very little is known about their biochemical properties or precise biological functions. As a first step toward understanding the roles of the RAD51 paralogs in recombination, the human RAD51C and XRCC3 proteins were overexpressed and purified from baculovirus-infected insect cells. The two proteins copurify as a complex, a property that reflects their endogenous association observed in HeLa cells. Purified RAD51C--XRCC3 complex binds single-stranded, but not duplex DNA, to form protein--DNA networks that have been visualized by electron microscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Revealing the parties, the processes and the institutions and, consequently, both the diversity and contingency of the real estate markets, the existing increasing literature emphasises the contemporary numerous links and interdependencies between real estate, land value, planning and town planning policy and even the financial system. This paper is an attempt to understand all the real estate markets, from the most peripheral ones, where the urban rent is the lowest, to the most dense city centres. To gain a better understanding of the real estate market, a process of firstly deconstruction and then reconstruction is used. The process of deconstruction involves identifying various market trends according to property type (principally residential buildings), players and institutions, territorial situations and temporalities based on research conducted in Switzerland. We then developed a meta-synthesis inspired by Fernand Braudel whose works put as much emphasis on day-to-day economic activity as on long-term activity, and on local as well as global issues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Left atrial (LA) dilatation is associated with a large variety of cardiac diseases. Current cardiovascular magnetic resonance (CMR) strategies to measure LA volumes are based on multi-breath-hold multi-slice acquisitions, which are time-consuming and susceptible to misregistration. AIM: To develop a time-efficient single breath-hold 3D CMR acquisition and reconstruction method to precisely measure LA volumes and function. METHODS: A highly accelerated compressed-sensing multi-slice cine sequence (CS-cineCMR) was combined with a non-model-based 3D reconstruction method to measure LA volumes with high temporal and spatial resolution during a single breath-hold. This approach was validated in LA phantoms of different shapes and applied in 3 patients. In addition, the influence of slice orientations on accuracy was evaluated in the LA phantoms for the new approach in comparison with a conventional model-based biplane area-length reconstruction. As a reference in patients, a self-navigated high-resolution whole-heart 3D dataset (3D-HR-CMR) was acquired during mid-diastole to yield accurate LA volumes. RESULTS: Phantom studies. LA volumes were accurately measured by CS-cineCMR with a mean difference of -4.73 ± 1.75 ml (-8.67 ± 3.54%, r2 = 0.94). For the new method the calculated volumes were not significantly different when different orientations of the CS-cineCMR slices were applied to cover the LA phantoms. Long-axis "aligned" vs "not aligned" with the phantom long-axis yielded similar differences vs the reference volume (-4.87 ± 1.73 ml vs. -4.45 ± 1.97 ml, p = 0.67) and short-axis "perpendicular" vs. "not-perpendicular" with the LA long-axis (-4.72 ± 1.66 ml vs. -4.75 ± 2.13 ml; p = 0.98). The conventional bi-plane area-length method was susceptible for slice orientations (p = 0.0085 for the interaction of "slice orientation" and "reconstruction technique", 2-way ANOVA for repeated measures). To use the 3D-HR-CMR as the reference for LA volumes in patients, it was validated in the LA phantoms (mean difference: -1.37 ± 1.35 ml, -2.38 ± 2.44%, r2 = 0.97). Patient study: The CS-cineCMR LA volumes of the mid-diastolic frame matched closely with the reference LA volume (measured by 3D-HR-CMR) with a difference of -2.66 ± 6.5 ml (3.0% underestimation; true LA volumes: 63 ml, 62 ml, and 395 ml). Finally, a high intra- and inter-observer agreement for maximal and minimal LA volume measurement is also shown. CONCLUSIONS: The proposed method combines a highly accelerated single-breathhold compressed-sensing multi-slice CMR technique with a non-model-based 3D reconstruction to accurately and reproducibly measure LA volumes and function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human MRE11 is a key enzyme in DNA double-strand break repair and genome stability. Human MRE11 bears a glycine-arginine-rich (GAR) motif that is conserved among multicellular eukaryotic species. We investigated how this motif influences MRE11 function. Human MRE11 alone or a complex of MRE11, RAD50, and NBS1 (MRN) was methylated in insect cells, suggesting that this modification is conserved during evolution. We demonstrate that PRMT1 interacts with MRE11 but not with the MRN complex, suggesting that MRE11 arginine methylation occurs prior to the binding of NBS1 and RAD50. Moreover, the first six methylated arginines are essential for the regulation of MRE11 DNA binding and nuclease activity. The inhibition of arginine methylation leads to a reduction in MRE11 and RAD51 focus formation on a unique double-strand break in vivo. Furthermore, the MRE11-methylated GAR domain is sufficient for its targeting to DNA damage foci and colocalization with gamma-H2AX. These studies highlight an important role for the GAR domain in regulating MRE11 function at the biochemical and cellular levels during DNA double-strand break repair.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The lymphatic vasculature is important for the regulation of tissue fluid homeostasis, immune response, and lipid absorption, and the development of in vitro models should allow for a better understanding of the mechanisms regulating lymphatic vascular growth, repair, and function. Here we report isolation and characterization of lymphatic endothelial cells from human intestine and show that intestinal lymphatic endothelial cells have a related but distinct gene expression profile from human dermal lymphatic endothelial cells. Furthermore, we identify liprin beta1, a member of the family of LAR transmembrane tyrosine phosphatase-interacting proteins, as highly expressed in intestinal lymphatic endothelial cells in vitro and lymphatic vasculature in vivo, and show that it plays an important role in the maintenance of lymphatic vessel integrity in Xenopus tadpoles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RATIONALE: Lung injury leads to pulmonary inflammation and fibrosis through myeloid differentiation primary response gene 88 (MyD88) and the IL-1 receptor 1 (IL-1R1) signaling pathway. The molecular mechanisms by which lung injury triggers IL-1beta production, inflammation, and fibrosis remain poorly understood. OBJECTIVES: To determine if lung injury depends on the NALP3 inflammasome and if bleomycin (BLM)-induced lung injury triggers local production of uric acid, thereby activating the NALP3 inflammasome in the lung. Methods: Inflammation upon BLM administration was evaluated in vivo in inflammasome-deficient mice. Pulmonary uric acid accumulation, inflammation, and fibrosis were analyzed in mice treated with the inhibitor of uric acid synthesis or with uricase, which degrades uric acid. MEASUREMENTS AND MAIN RESULTS: Lung injury depends on the NALP3 inflammasome, which is triggered by uric acid locally produced in the lung upon BLM-induced DNA damage and degradation. Reduction of uric acid levels using the inhibitor of uric acid synthesis allopurinol or uricase leads to a decrease in BLM-induced IL-1beta production, lung inflammation, repair, and fibrosis. Local administration of exogenous uric acid crystals recapitulates lung inflammation and repair, which depend on the NALP3 inflammasome, MyD88, and IL-1R1 pathways and Toll-like receptor (TLR)2 and TLR4 for optimal inflammation but are independent of the IL-18 receptor. CONCLUSIONS: Uric acid released from injured cells constitutes a major endogenous danger signal that activates the NALP3 inflammasome, leading to IL-1beta production. Reducing uric acid tissue levels represents a novel therapeutic approach to control IL-1beta production and chronic inflammatory lung pathology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Summary : Platelet Derived Growth Factor (PDGF) and Transforming Growth Factor-ß (TGF-ß) are two crucial growth factors in tissue repair and regeneration. They control migration and proliferation of macrophages and fibroblasts, as well as myofibroblast differentiation and synthesis of the new connective tissue. The transcription factor Nuclear Factor I-C (NFI-C) has been implicated in the TGF-ß pathway and regulation of extracellular matrix proteins in vitro. This suggests a possible implication of NFI-C in tissue repair. In this study, our purpose was to identify the NFI-C target genes in TGF-ß1 pathway activation and define the relationship between these two factors in cutaneous wound healing process. High-throughput genomic analysis in wild-type and NFI-C knock-out embryonic fibroblasts indicated that NFI-C acts as a repressor of the expression of genes which transcriptional activity is enhanced by TGF-ß. Interestingly, we found an over representation of genes involved in connective tissue inflammation and repair. In accordance with the genomic analysis, NFI-C-/- mice showed an improvement of skin healing during the inflammatory stage. Analysis of this new phenotype indicated that the expression of PDGFA and PDGF-Ra genes were increased in the wounds of NFI-C-/- mice resulting in early recruitment of macrophages and fibroblasts in the granulation tissue. In correlation with the stimulation effect of TGF-ß on myofibroblast differentiation we found an increased differentiation of these cells in null mice, providing a rationale for rapid wound closure. Thus, in the absence of NFI-C, both TGF-ß and PDGF pathways may be activated, leading to enhanced healing process. Therefore, the inhibition of NFI-C expression could constitute a suitable therapy for healing improvement. In addition, we identified a delay of hair follicle cycle initiation in NFI-C-/- mice. This prompted us to investigate the role of NFI-C in skin appendage. The transition from a quiescent to a proliferative phase requires a perfect timing of signalling modulation, leading to stem cell activation. As a consequence of cycle initiation delay in null mice, the activation of signalling involved in cell proliferation was also retarded. Interestingly, at the crucial moment of cell fate determination, we identified a decrease of CD34 gene in mutant mice. Since CD34 protein is involved in migration of multipotent cells, we suggest that NFI-C may be involved in stem cell mobilisation required for hair follicle renewal. Further investigations of the role of NFI-C in progenitor cell activation will lead to a better understanding of tissue regeneration and raise the possibility of treating alopecia with NFI-C-targeting treatment. In summary, this study demonstrates new regenerative functions of NFI-C in adult mice, which regulates skin repair and hair follicle renewal. Résumé : PDGF et TGF-ß sont des facteurs important du mécanisme de défense immunitaire. Ils influencent la prolifération et migration des macrophages et des fibroblastes, ainsi que la différenciation des myofibroblastes et la formation du nouveau tissu conjonctif. Le facteur de transcription NFI-C a été impliqué dans la voie de signalisation de TGF-ß et dans 1a régulation de l'expression des protéines de la matrice extracellulaire in vitro. Ces études antérieures laissent supposer que NFI-C serait un facteur important du remodelage tissulaire. Cependant le rôle de NFI-C dans un tissu comme la peau n'a pas encore été étudié. Dans ce travail, le but a été de d'identifier la relation qu'il existe entre I~1FI-C et TGF-ßl à un niveau transcriptionnel et dans le processus de cicatrisation cutanée in vivo. Ainsi, une analyse génétique à grande échelle, a permis d'indiquer que NFI-C agit comme un répresseur sur l'expression des gènes dont l'activité transcriptionnelle est activée par TGF-ß. De plus nous avons identifié un groupe de gènes qui controlent le développement et l'inflammation du tissue conjonctif. En relation avec ce résultat, l'absence de NFI-C dans la peau induit une cicatrisation plus rapide pendant la phase inflammatoire. Durant cette période, nous avons montré que les expressions de PDGFA et PDGFRa seraient plus élevées en absence de NFI-C. En conséquence, l'activation de la voie de PDGF induit une infiltration plus importante des macrophages et fibroblastes dans le tissue granuleux des souris mutantes. De plus, en corrélation avec le rôle de TGF-ßl dans la différenciation des myofibroblasts, nous avons observé une différenciation plus importante de ces cellules chez les animaux knock-out, ce qui peut expliquer une contraction plus rapide de la plaie. De plus, nous avons découvert que NFI-C est impliqué dans l'initiation du cycle folliculaire. La caractérisation de ce nouveau phénotype a montré un ralentissement de la transition telogène-anagène des souris NFI-C-/-. Or, un événement clé de cette transition est la modulation de plusieurs signaux moléculaires aboutissant à' l'activation des cellules souches. En corrélation avec le decalage du cycle, l'activation de ces signaux est également décalée dans les souris NFI-C-/-. Ainsi, au commencement de l'anagène, la prolifération des keratinocytes,NFI-C-/- est retardée et corrèle avec une diminution de l'expression de CD34, une protéine responsable de la détermination du migration des cellules multipotentes. Ainsi, NFI-C semble être impliqué dans la mobilisation des cellules souches qui sont nécessaires au renouvellement folliculaire. En résumé, NFI-C est impliqué dans la régulation des signaux moléculaires nécessaires à la réparation tissulaire et son inhibition pourrait constituer un traitement de la cicatrisation. L'analyse de son rôle dans l'activation des cellules souches permettrait de mieux comprendre le renouvellement tissulaire et, à long terme, d'améliorer les techniques de greffe des cellules souches épithéliales ou consituter une cible pour le traitement de l'alopecie.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase and a nuclease that restricts HIV-1 in noncycling cells. Germ-line mutations in SAMHD1 have been described in patients with Aicardi-Goutières syndrome (AGS), a congenital autoimmune disease. In a previous longitudinal whole genome sequencing study of chronic lymphocytic leukemia (CLL), we revealed a SAMHD1 mutation as a potential founding event. Here, we describe an AGS patient carrying a pathogenic germ-line SAMHD1 mutation who developed CLL at 24 years of age. Using clinical trial samples, we show that acquired SAMHD1 mutations are associated with high variant allele frequency and reduced SAMHD1 expression and occur in 11% of relapsed/refractory CLL patients. We provide evidence that SAMHD1 regulates cell proliferation and survival and engages in specific protein interactions in response to DNA damage. We propose that SAMHD1 may have a function in DNA repair and that the presence of SAMHD1 mutations in CLL promotes leukemia development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The application of two approaches for high-throughput, high-resolution X-ray phase contrast tomographic imaging being used at the tomographic microscopy and coherent radiology experiments (TOMCAT) beamline of the SLS is discussed and illustrated. Differential phase contrast (DPC) imaging, using a grating interferometer and a phase-stepping technique, is integrated into the beamline environment at TOMCAT in terms of the fast acquisition and reconstruction of data and the availability to scan samples within an aqueous environment. A second phase contrast method is a modified transfer of intensity approach that can yield the 3D distribution of the decrement of the refractive index of a weakly absorbing object from a single tomographic dataset. The two methods are complementary to one another: the DPC method is characterised by a higher sensitivity and by moderate resolution with larger samples; the modified transfer of intensity approach is particularly suited for small specimens when high resolution (around 1 mu m) is required. Both are being applied to investigations in the biological and materials science fields.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: The objective of the present study was to compare current results of prosthetic valve replacement following acute infective native valve endocarditis (NVE) with that of prosthetic valve endocarditis (PVE). Prosthetic valve replacement is often necessary for acute infective endocarditis. Although valve repair and homografts have been associated with excellent outcome, homograft availability and the importance of valvular destruction often dictate prosthetic valve replacement in patients with acute bacterial endocarditis. METHODS: A retrospective analysis of the experience with prosthetic valve replacement following acute NVE and PVE between 1988 and 1998 was performed at the Montreal Heart Institute. RESULTS: Seventy-seven patients (57 men and 20 women, mean age 48 +/- 16 years) with acute infective endocarditis underwent valve replacement. Fifty patients had NVE and 27 had PVE. Four patients (8%) with NVE died within 30 days of operation and there were no hospital deaths in patients with PVE. Survival at 1, 5, and 7 years averaged 80% +/- 6%, 76% +/- 6%, and 76% +/- 6% for NVE and 70% +/- 9%, 59% +/- 10%, and 55% +/- 10% for PVE, respectively (p = 0.15). Reoperation-free survival at 1, 5, and 7 years averaged 80% +/- 6%, 76% +/- 6%, and 76% +/- 6% for NVE and 45% +/- 10%, 40% +/- 10%, and 36% +/- 9% for PVE (p = 0.003). Five-year survival for NVE averaged 75% +/- 9% following aortic valve replacement and 79% +/- 9% following mitral valve replacement. Five-year survival for PVE averaged 66% +/- 12% following aortic valve replacement and 43% +/- 19% following mitral valve replacement (p = 0.75). Nine patients underwent reoperation during follow-up: indications were prosthesis infection in 4 patients (3 mitral, 1 aortic), dehiscence of mitral prosthesis in 3, and dehiscence of aortic prosthesis in 2. CONCLUSIONS: Prosthetic valve replacement for NVE resulted in good long-term patient survival with a minimal risk of reoperation compared with patients who underwent valve replacement for PVE. In patients with PVE, those who needed reoperation had recurrent endocarditis or noninfectious periprosthetic dehiscence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Résumé Les caspases sont des protéases essentielles lors de l'induction de l'apoptose ou pour la maturation de certaines cytokines. Elles peuvent être divisées en deux groupes: les caspases initiatrices, qui sont les premières activées lors d'un signal pro-apoptotique, et les caspases effectrices, qui sont activées par les caspases initiatrices et sont responsables du clivage et de la dégradation des substrats cellulaires. Les caspases initiatrices sont activées dans des complexes de haut poids moléculaire: l'apoptosome pour la caspase-9 et le DISC pour la caspase-8. La caspase-2 est également une caspase initiatrice qui contient un domaine CARD. Cependant son mécanisme d'activation n'est pas encore connu. Lors de cette étude, nous avons découvert et caractérisé le complexe qui permet l'activation de la caspase-2. Ce complexe, appelé le PIDDosome, est composé de PIDD/LRDD, de la protéine adaptatrice RAIDD et de la protéase caspase-2. L'expression forcée de PIDD induit l'activation constitutive de la caspase-2. Cela entraîne la mort ou la sensibilisation à la mort des cellules selon la lignée étudiée. Cet effet est expliqué par une perte du potentiel de membrane de la mitochondrie, certainement dû à un effet direct de la caspase-2. Peu de choses sont connues sur PIDD: c'est une protéine contenant un domaine DD qui peut être induite par p53. Nous avons caractérisé PIDD et montré qu'elle est exprimée de façon ubiquitaire. PIDD est constitutivement auto-clivée environ au milieu de la protéine, ce qui génère deux fragments qui restent liés l'un à l'autre. Le fragment N-terminal a une activité régulatrice et le C-terminal une activité effectrice. De plus, PIDD peut se déplacer entre le cytoplasme et le noyau. Enfin, nous avons découvert que PIDD est également impliquée dans l'induction de NF¬ -κB en réponse à des dommages à l'ADN. PIDD est responsable de la modification par sumo de NEMO, étape nécessaire à l'induction de NF-κB après des dommages à l'ADN. Ainsi PIDD semble être à l'intersection de la décision que prend la cellule entre survivre et réparer les dommages, ou entrer en apoptose. Summary Caspases are a family of proteases that fulfill varied and often critical roles in mammalian apoptosis or proteolytic activation of cytokines. Caspases can be divided into two sub-groups: initiator caspases, which are the first activated after a pro-apoptotic signal, and effector caspases, which are activated by initiator caspases and that are responsible for the cleavage and degradation of cellular components. Initiator caspases are activated in high molecular weight platforms such as the apoptosome for caspase-9 or the DISC for caspase-8. Caspase-2 is a CARD-containing initiator caspase whose mechanism of activation was not yet known. In this study we have identified an activating platform for caspase-2. This high molecular weight complex, called the PIDDosome, is composed of PIDD/LRDD, the adaptor protein RAIDD and caspase-2. Constitutive expression of PIDD led to constitutive activation of caspase-2, which in some cell lines was sufficient to induce cell death while in others it merely sensitizes. Active caspase-2 was found to disturb directly the mitochondria by inducing a partial loss of the transmembrane potential. Very little was known on PIDD. It can be induce by p53 and inhibition of its expression by antisense oligonucleotides diminishes p53-dependent apoptosis. We decided to further characterize PIDD function and expression. PIDD possesses seven LRR, two Zu5 domains and one DD. It is ubiquitously expressed and appears to be constitutively cleaved by auto- processing into two main fragments equal in size. The two fragments remain bound to one another and constitute a regulatory N-terminal fragment and an active C-terminal fragment. In addition, PIDD can shuttle between the cytoplasm and the nucleus. Finally, investigating the possible relevance of new interaction partners, we found that PIDD is implicated in DNA damage-induced NF- κB. PIDD binds to RIP1 and to NEMO. In response to DNA damage, PIDD translocates to the nucleus and mediates sumo- modification of NEMO, a necessary step in DNA damage-induced NF-κB. All together these results raise the possibility that PIDD acts as a molecular switch between proliferation and repair, and apoptosis following DNA damage.