293 resultados para BLOOD FLOW


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adequate supply of oxygen to the brain is critical for maintaining normal brain function. Severe hypoxia, such as that experienced during high altitude ascent, presents a unique challenge to brain oxygen (O2) supply. During high-intensity exercise, hyperventilation-induced hypocapnia leads to cerebral vasoconstriction, followed by reductions in cerebral blood flow (CBF), oxygen delivery (DO2), and tissue oxygenation. This reduced O2 supply to the brain could potentially account for the reduced performance typically observed during exercise in severe hypoxic conditions. The aims of this thesis were to document the effect of acute and chronic exposure to hypoxia on CBF control, and to determine the role of cerebral DO2 and tissue oxygenation in limiting performance during exercise in severe hypoxia. We assessed CBF, arterial O2 content (CaO2), haemoglobin concentration ([Hb]), partial pressure of arterial O2 (PaO2), cerebrovascular CO2 reactivity, ventilatory response to CO2, cerebral autoregulation (CA), and estimated cerebral DO2 (CBF ⨉ CaO2) at sea level (SL), upon ascent to 5,260 m (ALT1), and following 16 days of acclimatisation to 5,260 m (ALT16). We found an increase in CBF despite an elevated cerebrovascular CO2 reactivity at ALT1, which coincided with a reduced CA. Meanwhile, PaO2 was greatly decreased despite increased ventilatory drive at ALT1, resulting in a concomitant decrease in CaO2. At ALT16, CBF decreased towards SL values, while cerebrovascular CO2 reactivity and ventilatory drive were further elevated. Acclimatisation increased PaO2, [Hb], and therefore CaO2 at ALT16, but these changes did not improve CA compared to ALT1. No differences were observed in cerebral DO2 across SL, ALT1, and ALT16. Our findings demonstrate that cerebral DO2 is maintained during both acute and chronic exposure to 5,260 m, due to the reciprocal changes in CBF and CaO2. We measured middle cerebral artery velocity (MCAv: index of CBF), cerebral DO2, ventilation (VE), and performance during incremental cycling to exhaustion and 15km time trial cycling in both normoxia and severe hypoxia (11% O2, normobaric), with and without added CO2 to the inspirate (CO2 breathing). We found MCAv was higher during exercise in severe hypoxia compared in normoxia, while cerebral tissue oxygenation and DO2 were reduced. CO2 breathing was effective in preventing the development of hyperventilation-induced hypocapnia during intense exercise in both normoxia and hypoxia. As a result, we were able to increase both MCAv and cerebral DO2 during exercise in hypoxia with our CO2 breathing setup. However, we concomitantly increased VE and PaO2 (and presumably respiratory work) due to the increased hypercapnic stimuli with CO2 breathing, which subsequently contributed to the cerebral DO2 increase during hypoxic exercise. While we effectively restored cerebral DO2 during exercise in hypoxia to normoxic values with CO2 breathing, we did not observe any improvement in cerebral tissue oxygenation or exercise performance. Accordingly, our findings do not support the role of reduced cerebral DO2 in limiting exercise performance in severe hypoxia. -- Un apport adéquat en oxygène au niveau du cerveau est primordial pour le maintien des fonctions cérébrales normales. L'hypoxie sévère, telle qu'expérimentée au cours d'ascensions en haute altitude, présente un défi unique pour l'apport cérébral en oxygène (O2). Lors d'exercices à haute intensité, l'hypocapnie induite par l'hyperventilation entraîne une vasoconstriction cérébrale suivie par une réduction du flux sanguin cérébral (CBF), de l'apport en oxygène (DO2), ainsi que de l'oxygénation tissulaire. Cette réduction de l'apport en O2 au cerveau pourrait potentiellement être responsable de la diminution de performance observée au cours d'exercices en condition d'hypoxie sévère. Les buts de cette thèse étaient de documenter l'effet de l'exposition aiguë et chronique à l'hypoxie sur le contrôle du CBF, ainsi que de déterminer le rôle du DO2 cérébral et de l'oxygénation tissulaire comme facteurs limitant la performance lors d'exercices en hypoxie sévère. Nous avons mesuré CBF, le contenu artériel en oxygène (CaO2), la concentration en hémoglobine ([Hb]), la pression partielle artérielle en O2 (PaO2), la réactivité cérébrovasculaire au CO2, la réponse ventilatoire au CO2, et l'autorégulation cérébrale sanguine (CA), et estimé DO2 cérébral (CBF x CaO2), au niveau de la mer (SL), au premier jour à 5.260 m (ALT1) et après seize jours d'acclimatation à 5.260 m (ALT16). Nous avons trouvé des augmentations du CBF et de la réactivité cérébrovasculaire au CO2 après une ascension à 5.260 m. Ces augmentations coïncidaient avec une réduction de l'autorégulation cérébrale. Simultanément, la PaO2 était grandement réduite, malgré l'augmentation de la ventilation (VE), résultant en une diminution de la CaO2. Après seize jours d'acclimatation à 5.260 m, le CBF revenait autour des valeurs observées au niveau de la mer, alors que la réactivité cérébrovasculaire au CO2 et la VE augmentaient par rapport à ALT1. L'acclimatation augmentait la PaO2, la concentration en hémoglobine, et donc la CaO2, mais n'améliorait pas l'autorégulation cérébrale, comparé à ALT1. Aucune différence n'était observée au niveau du DO2 cérébral entre SL, ALT1 et ALT16. Nos résultats montrent que le DO2 cérébral est maintenu constant lors d'expositions aiguë et chronique à 5.260m, ce qui s'explique par la réciprocité des variations du CBF et de la CaO2. Nous avons mesuré la vitesse d'écoulement du sang dans l'artère cérébrale moyenne (MCAv : un indice du CBF), le DO2 cérébral, la VE et la performance lors d'exercice incrémentaux jusqu'à épuisement sur cycloergomètre, ainsi que des contre-la-montres de 15 km en normoxie et en hypoxie sévère (11% O2, normobarique) ; avec ajout ou non de CO2 dans le mélange gazeux inspiré. Nous avons trouvé que MCAv était plus haute pendant l'exercice hypoxique, comparé à la normoxie alors que le DO2 cérébral était réduit. L'ajout de CO2 dans le gaz inspiré était efficace pour prévenir l'hypocapnie induite par l'hyperventilation, qui se développe à l'exercice intense, à la fois en normoxie et en hypoxie. Nous avons pu augmenter MCAv et le DO2 cérébral pendant l'exercice hypoxique, grâce à l'ajout de CO2. Cependant, nous avons augmenté la VE et la PaO2 (et probablement le travail respiratoire) à cause de l'augmentation du stimulus hypercapnique. Alors que nous avons, grâce à l'ajout de CO2, efficacement restauré le DO2 cérébral au cours de l'exercice en hypoxie à des valeurs obtenues en normoxie, nous n'avons observé aucune amélioration dans l'oxygénation du tissu cérébral ou de la performance. En conséquence, nos résultats ne soutiennent pas le rôle d'un DO2 cérébral réduit comme facteur limitant de la performance en hypoxie sévère.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: Quantification of myocardial blood flow (MBF) with generator-produced (82)Rb is an attractive alternative for centres without an on-site cyclotron. Our aim was to validate (82)Rb-measured MBF in relation to that measured using (15)O-water, as a tracer 100% of which can be extracted from the circulation even at high flow rates, in healthy control subject and patients with mild coronary artery disease (CAD). METHODS: MBF was measured at rest and during adenosine-induced hyperaemia with (82)Rb and (15)O-water PET in 33 participants (22 control subjects, aged 30 ± 13 years; 11 CAD patients without transmural infarction, aged 60 ± 13 years). A one-tissue compartment (82)Rb model with ventricular spillover correction was used. The (82)Rb flow-dependent extraction rate was derived from (15)O-water measurements in a subset of 11 control subjects. Myocardial flow reserve (MFR) was defined as the hyperaemic/rest MBF. Pearson's correlation r, Bland-Altman 95% limits of agreement (LoA), and Lin's concordance correlation ρ (c) (measuring both precision and accuracy) were used. RESULTS: Over the entire MBF range (0.66-4.7 ml/min/g), concordance was excellent for MBF (r = 0.90, [(82)Rb-(15)O-water] mean difference ± SD = 0.04 ± 0.66 ml/min/g, LoA = -1.26 to 1.33 ml/min/g, ρ(c) = 0.88) and MFR (range 1.79-5.81, r = 0.83, mean difference = 0.14 ± 0.58, LoA = -0.99 to 1.28, ρ(c) = 0.82). Hyperaemic MBF was reduced in CAD patients compared with the subset of 11 control subjects (2.53 ± 0.74 vs. 3.62 ± 0.68 ml/min/g, p = 0.002, for (15)O-water; 2.53 ± 1.01 vs. 3.82 ± 1.21 ml/min/g, p = 0.013, for (82)Rb) and this was paralleled by a lower MFR (2.65 ± 0.62 vs. 3.79 ± 0.98, p = 0.004, for (15)O-water; 2.85 ± 0.91 vs. 3.88 ± 0.91, p = 0.012, for (82)Rb). Myocardial perfusion was homogeneous in 1,114 of 1,122 segments (99.3%) and there were no differences in MBF among the coronary artery territories (p > 0.31). CONCLUSION: Quantification of MBF with (82)Rb with a newly derived correction for the nonlinear extraction function was validated against MBF measured using (15)O-water in control subjects and patients with mild CAD, where it was found to be accurate at high flow rates. (82)Rb-derived MBF estimates seem robust for clinical research, advancing a step further towards its implementation in clinical routine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The indication for pulmonary artery banding is currently limited by several factors. Previous attempts have failed to produce adjustable pulmonary artery banding with reliable external regulation. An implantable, telemetrically controlled, battery-free device (FloWatch) developed by EndoArt SA, a medical company established in Lausanne, Switzerland, for externally adjustable pulmonary artery banding was evaluated on minipigs and proved to be effective for up to 6 months. The first human implant was performed on a girl with complete atrioventricular septal defect with unbalanced ventricles, large patent ductus arteriosus and pulmonary hypertension. At one month of age she underwent closure of the patent ductus arteriosus and FloWatch implantation around the pulmonary artery through conventional left thoracotomy. The surgical procedure was rapid and uneventful. During the entire postoperative period bedside adjustments (narrowing or release of pulmonary artery banding with echocardiographic assessment) were repeatedly required to maintain an adequate pressure gradient. The early clinical results demonstrated the clinical benefits of unlimited external telemetric adjustments. The next step will be a multi-centre clinical trial to confirm the early results and adapt therapeutic strategies to this promising technology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Monitoring and management of intracranial pressure (ICP) and cerebral perfusion pressure (CPP) is a standard of care after traumatic brain injury (TBI). However, the pathophysiology of so-called secondary brain injury, i.e., the cascade of potentially deleterious events that occur in the early phase following initial cerebral insult-after TBI, is complex, involving a subtle interplay between cerebral blood flow (CBF), oxygen delivery and utilization, and supply of main cerebral energy substrates (glucose) to the injured brain. Regulation of this interplay depends on the type of injury and may vary individually and over time. In this setting, patient management can be a challenging task, where standard ICP/CPP monitoring may become insufficient to prevent secondary brain injury. Growing clinical evidence demonstrates that so-called multimodal brain monitoring, including brain tissue oxygen (PbtO2), cerebral microdialysis and transcranial Doppler among others, might help to optimize CBF and the delivery of oxygen/energy substrate at the bedside, thereby improving the management of secondary brain injury. Looking beyond ICP and CPP, and applying a multimodal therapeutic approach for the optimization of CBF, oxygen delivery, and brain energy supply may eventually improve overall care of patients with head injury. This review summarizes some of the important pathophysiological determinants of secondary cerebral damage after TBI and discusses novel approaches to optimize CBF and provide adequate oxygen and energy supply to the injured brain using multimodal brain monitoring.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Effet d'un bolus intraveineux de phénylephrine ou d'éphedríne sur le flux sanguin cutané lors d'une anesthésie rachidienne Introduction : La phénylephrine et l'éphedrine sont des substances vaso-actives utilisées de routine pour corriger des épisodes d'hypotension artérielle induits par l'anesthésie intrarachidienne. L'influence de ces deux vasopresseurs sur le flux sanguin cutané (FSC) dans ce contexte n'a jusqu'à maintenant pas été décrite. Cette étude évalue l'effet d'une injection intraveineuse de 75 µg de phénylephrine ou de 7.5 mg d'éphedrine sur le FSC mesuré par Laser Doppler, dans les zones concernées parle bloc sympathiqué induit par l'anesthésie intrarachidienne (membres inférieurs) et dans les zones non concernées (membres supérieurs). Méthode :Après acceptation par le Comité d'Éthique, et obtention de leur accord écrit, 20 patients devant subir une intervention chirurgicale élective en décubitus dorsal sous anesthésie. intrarachidienne ont été inclus dans cette étude randomisée en double insu. Le FSC a été mesuré en continu par deux sondes fixées l'une à la cuisse (zone avec bloc sympathique) et l'autre sur l'avantbras (zone sans bloc sympathique). Les valeurs de FSC ont été enregistrées après l'anesthésie rachidienne (valeur contrôle), puis après l'injection i.v. dè phénylephrine (10 patients) ou d'éphedrine (10 patients) pour corriger une hypotension définie comme une chute de 20 mmHg de la pression artérielle systolique. Les variations de FSC exprimées en pourcentage de la valeur contrôle moyenne (+/- écart type) ont été analysées par le test t de Student. Résultats :Les données démographiques des patients et le niveau sensitif induit par l'anesthésie rachidienne sont similaires dans les deux groupes. Aux doses utilisées, seule l'éphedrine restaure la pression artérielle aux valeurs précédant l'anesthésie rachidienne. La phénylephrine augmente le FSC de l'avant-bras de 44% (+/- 79%) et de la cuisse de 34% (+/-24%), alors que l'éphedrine diminue le débit sanguin cutané de l'avant-bras de 16% (+/- 15%) et de la cuisse de 22% (+/-11%). Conclusion : L'injection intraveineuse de phénylephrine et d'éphedrine ont des effets opposés sur le flux sanguin cutané, et cette réponse n'est pas modifiée par le bloc sympathique.. Cette différence peut s'expliquer par la distribution des sous-types de récepteurs adrénergiques alpha et leur prédominance relative dans les veines et les artères de différents diamètres perfusant le tissu sous-cutané et la peau. L'éphedrine, èn raison de sa meilleure efficacité pour traiter les épisodes d'hypotension artérielle après anesthésie intrarachidienne devrait être préféré à la phénylephrine, leurs effets opposés sur le flux sanguin cutané n'étant pas pertinents en pratique clinique. SUMMARY Background: Phenylephrine or ephedrine is routinely used to correct hypotensive episodes fallowing spinal anaesthesia (SA). The influence of these two vasopressors on skin blood flow (SBF) has not yet been described. We have therefore evaluated the effects of an i.v. bolus of 75 µg phenylephrine or 7.5 mg of ephedrine on SBF measured by laser Doppler flowmetry during sympathetic blockade induced by SA. Methods: With Ethical Committee approval and written consent, 20 patients scheduled for elective procedures in supine position under SA were enrolled in this double-blind randomized study. SBF was measured continuously by two probes fixed at the thigh (area with sympathic blockade) and forearm level (area without sympathic blockade) respectively. SBF values were recorded after SA (control values) and then after a bolus administration of phenylephriné (n=10) or ephedrine (n=10) when systolic blood pressure decreased by 20 mmHg. Changes were expressed as percentage of control SBF values and analysed by Student's paired t-test. Results: Patient characteristics and dermatomal sensory levels were similar in both groups. Phenylephrine increases mean SBF at the forearm level by 44% (79%) [mean (SD)j and at the thigh by 34% (24%). Ephedrine decreases SBF at the forearm level by 16% (15%) and at the thigh by 22% (il%). Ephedrine bolus restores arterial blood pressure to pre-anaesthesia values, whereas phenylephrine does not. Conclusion: Administratión of phenylephrine and ephedrine has opposite effects on skin blood flow and sympathetic blockade does not modify this response. These findings could be explained by the distribution of the alpha-adrenoréceptor subtypes and their relative predominance among veins and arteries of different size perfusing the subcutaneous tissue and the skin. Ephedrine, due to its better efficacy to correct hypotensive episodes following SA, should be preferred, to phenylephrine, their opposite effects on SBF being not relevant for clinical practice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Euglycemic hyperinsulinemia stimulates both sympathetic nerve activity and blood flow to skeletal muscle, but the mechanism is unknown. Possible mechanisms that may stimulate muscle blood flow include neural, humoral, or metabolic effects of insulin. To determine whether such insulin-induced vasodilation is modulated by stimulation of adrenergic or cholinergic mechanisms, we obtained, in eight healthy lean subjects, plethysmographic measurements of calf blood flow during 3 h of hyperinsulinemic (1 mU.kg-1.min-1) euglycemic clamp performed alone or during concomitant beta-adrenergic (propranolol infusion), cholinergic (atropine infusion), or alpha-adrenergic (prazosin administration) blockade. Euglycemic hyperinsulinemia alone increased calf blood flow by 38 +/- 10% (means +/- SE) and decreased vascular resistance by 27 +/- 4% (P < 0.01). The principal new observation is that these insulin-induced vasodilatory responses were not attenuated by concomitant propranolol or atropine infusion, nor were they potentiated by prazosin administration. In conclusion, these findings provide evidence that during euglycemic hyperinsulinemia in lean healthy humans stimulation of muscle blood flow is not mediated primarily by beta-adrenergic or cholinergic mechanisms. Furthermore, alpha-adrenergic mechanisms do not markedly limit insulin-induced stimulation of muscle blood flow.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Among numerous magnetic resonance imaging (MRI) techniques, perfusion MRI provides insight into the passage of blood through the brain's vascular network non-invasively. Studying disease models and transgenic mice would intrinsically help understanding the underlying brain functions, cerebrovascular disease and brain disorders. This study evaluates the feasibility of performing continuous arterial spin labeling (CASL) on all cranial arteries for mapping murine cerebral blood flow at 9.4 T. We showed that with an active-detuned two-coil system, a labeling efficiency of 0.82 ± 0.03 was achieved with minimal magnetization transfer residuals in brain. The resulting cerebral blood flow of healthy mouse was 99 ± 26 mL/100g/min, in excellent agreement with other techniques. In conclusion, high magnetic fields deliver high sensitivity and allowing not only CASL but also other MR techniques, i.e. (1)H MRS and diffusion MRI etc, in studying murine brains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: The aim of the study was to determine whether glucose uptake in viable myocardium of ischemic cardiomyopathy patients depends on rest myocardial blood flow (MBF) and the residual myocardial flow reserve (MFR). METHODS: Thirty-six patients with ischemic cardiomyopathy (left ventricular ejection fraction 25 ± 10 %) were studied with N-ammonia and F-fluorodeoxyglucose (FDG) positron emission tomography (PET). Twenty age-matched normals served as controls. Regional MBF was determined at rest and during dipyridamole hyperemia and regional FDG extraction was estimated from regional FDG to N-ammonia activity ratios. RESULTS: Rest MBF was reduced in viable (0.42 ± 0.18 ml/min per g) and nonviable regions (0.32 ± 0.09 ml/min per g) relative to remote regions (0.68 ± 0.23 ml/min per g, p < 0.001) and to normals (0.63 ± 0.13 ml/min per g). Dipyridamole raised MBFs in controls, remote, viable, and nonviable regions. MBFs at rest (p < 0.05) and stress (p < 0.05) in viable regions were significantly higher than that in nonviable regions, while MFRs did not differ significantly (p > 0.05). Compared to MFR in remote myocardium, MFRs in viable regions were similar (1.39 ± 0.56 vs 1.70 ± 0.45, p > 0.05) but were significantly lower in nonviable regions (1.23 ± 0.43, p < 0.001). Moreover, the FDG and thus glucose extraction was higher in viable than in remote (1.40 ± 0.14 vs 0.90 ± 0.20, p < 0.001) and in nonviable regions (1.13 ± 0.21, p < 0.001). The extraction of FDG in viable regions was independent of rest MBF but correlated inversely with MFRs (r =-0.424, p < 0.05). No correlation between the FDG extraction and MFR was observed in nonviable regions. CONCLUSION: As in the animal model, decreasing MFRs in viable myocardium are associated with increasing glucose extraction that likely reflects a metabolic adaptation of remodeling hibernating myocytes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIMS: We studied the respective added value of the quantitative myocardial blood flow (MBF) and the myocardial flow reserve (MFR) as assessed with (82)Rb positron emission tomography (PET)/CT in predicting major adverse cardiovascular events (MACEs) in patients with suspected myocardial ischaemia. METHODS AND RESULTS: Myocardial perfusion images were analysed semi-quantitatively (SDS, summed difference score) and quantitatively (MBF, MFR) in 351 patients. Follow-up was completed in 335 patients and annualized MACE (cardiac death, myocardial infarction, revascularization, or hospitalization for congestive heart failure or de novo stable angor) rates were analysed with the Kaplan-Meier method in 318 patients after excluding 17 patients with early revascularizations (<60 days). Independent predictors of MACEs were identified by multivariate analysis. During a median follow-up of 624 days (inter-quartile range 540-697), 35 MACEs occurred. An annualized MACE rate was higher in patients with ischaemia (SDS >2) (n = 105) than those without [14% (95% CI = 9.1-22%) vs. 4.5% (2.7-7.4%), P < 0.0001]. The lowest MFR tertile group (MFR <1.8) had the highest MACE rate [16% (11-25%) vs. 2.9% (1.2-7.0%) and 4.3% (2.1-9.0%), P < 0.0001]. Similarly, the lowest stress MBF tertile group (MBF <1.8 mL/min/g) had the highest MACE rate [14% (9.2-22%) vs. 7.3% (4.2-13%) and 1.8% (0.6-5.5%), P = 0.0005]. Quantitation with stress MBF or MFR had a significant independent prognostic power in addition to semi-quantitative findings. The largest added value was conferred by combining stress MBF to SDS. This holds true even for patients without ischaemia. CONCLUSION: Perfusion findings in (82)Rb PET/CT are strong MACE outcome predictors. MBF quantification has an added value allowing further risk stratification in patients with normal and abnormal perfusion images.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: Continuous positive airway pressure (CPAP) is the gold standard treatment for obstructive sleep apnea. However, the physiologic impact of CPAP on cerebral blood flow (CBF) is not well established. Ultrasound can be used to estimate CBF, but there is no widespread accepted protocol. We studied the physiologic influence of CPAP on CBF using a method integrating arterial diameter and flow velocity (FV) measurements obtained for each vessel supplying blood to the brain. METHODS: FV and lumen diameter of the left and right internal carotid, vertebral, and middle cerebral arteries were measured using duplex Doppler ultrasound with and without CPAP at 15 cm H(2)O, applied in a random order. Transcutaneous carbon dioxide (PtcCO(2)), heart rate (HR), blood pressure (BP), and oxygen saturation were monitored. Results were compared with a theoretical prediction of CBF change based on the effect of partial pressure of carbon dioxide on CBF. RESULTS: Data were obtained from 23 healthy volunteers (mean ± SD; 12 male, age 25.1 ± 2.6 years, body mass index 21.8 ± 2.0 kg/m(2)). The mean experimental and theoretical CBF decrease under CPAP was 12.5 % (p < 0.001) and 11.9 % (p < 0.001), respectively. The difference between experimental and theoretical CBF reduction was not statistically significant (3.84 ± 79 ml/min, p = 0.40). There was a significant reduction in PtcCO(2) with CPAP (p = <0.001) and a significant increase in mean BP (p = 0.0017). No significant change was observed in SaO(2) (p = 0.21) and HR (p = 0.62). CONCLUSION: Duplex Doppler ultrasound measurements of arterial diameter and FV allow for a noninvasive bedside estimation of CBF. CPAP at 15 cm H(2)O significantly decreased CBF in healthy awake volunteers. This effect appeared to be mediated predominately through the hypocapnic vasoconstriction coinciding with PCO(2) level reduction. The results suggest that CPAP should be used cautiously in patients with unstable cerebral hemodynamics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Synthetic atrial natriuretic peptide, containing 26 amino acids in the rat sequence, L-364, 343 (Ileu-ANP), was infused intravenously at increasing rates (1-40 micrograms/min) into four normal volunteers. Mean intraarterial blood pressure decreased and heart rate increased in cumulative-dose-dependent fashion. Skin blood flow as measured with a laser Doppler device rose already with a cumulative dose of 55 micrograms Ileu-ANP and further rises were directly related to dose. The only side effects observed were those accompanying symptomatic hypotension at higher doses. These findings provide strong evidence that Ileu-ANP acts as a vasodilator in normal volunteers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: The aim of this study was to assess the blood flow in the feet before and after lower limb revascularization using laser Doppler imaging (LDI). METHODS: Ten patients with critical lower limb ischemia were prospectively enrolled from June to October 2004. All patients underwent successful unilateral surgical interventions including above-knee bypass, distal bypass and endarterectomy. Skin blood flow (SBF) over the plantar surface of both forefeet and heels was measured by LDI 24h before and 10 days after revascularization, expressed in perfusion units (PU), and reported as mean+/-SD. RESULTS: Measurements in the forefoot and heel were similar. Before revascularization mean SBF was significantly lower in the ischemic foot (130+/-71 PU) compared to the contralateral foot (212+/-68 PU), p<0.05. After revascularization a significant increase of the SBF in the forefoot (from 135+/-67 to 202+/-86 PU, p=0.001) and hindfoot (from 148+/-58 to 203+/-83, p=0.001) was observed on the treatment side. However, a large decrease of the SBF was seen in forefoot and hindfoot on the untreated side (from 250+/-123 PU to 176+/-83 and from 208+/-116 to 133+/-40, p=0.001, respectively). CONCLUSION: This study confirms the benefits of revascularization in patients with nonhealing foot lesions due to critical limb ischemia. A significant increase of the SBF was observed on the treatment side. However, an unexpected decrease was observed on the untreated side.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To evaluate whether early mobilization after acute ischaemic stroke is better than delayed mobilization with regard to medical complications and if it is safe in relation to neurological function and cerebral blood flow. DESIGN: Randomized controlled pilot trial of early versus delayed mobilization out of bed with incidence of severe complications as the primary outcome. SETTING: Acute stroke unit in the neurology department of a University Hospital. PARTICIPANTS: Fifty patients after ischaemic stroke with a National Institutes of Health Stroke Scale (NIHSS) score >6 were recruited. INTERVENTION: All patients were treated with physiotherapy immediately after their admission. In the early protocol patients were mobilized out of bed after 52 hours, in the delayed protocol after seven days. RESULTS: Eight out of 50 randomized patients were excluded from the per-protocol analysis because of early transfer to other hospitals. There were 2 (8%) severe complications in the 25 early mobilization patients and 8 (47%) in the 17 delayed mobilization patients (P < 0.006). There were no differences in the total number of complications or in clinical outcome. In the 26 patients (62%) who underwent serial transcranial Doppler ultrasonography, no blood flow differences were found. CONCLUSION: We found an apparent reduction in severe complications and no increase in total complications with an early mobilization protocol after acute ischaemic stroke. No influence on neurological three-month outcomes or on cerebral blood flow was seen. These results justify larger trials comparing mobilization protocols with possibly even faster mobilization out of bed than explored here.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. Anastomotic leak remains a common and potentially deleterious complication after esophagectomy. Preoperative embolization of the left gastric artery and splenic artery (PAE) has been suggested to lower anastomotic leak rates. We present the results of our 5-year experience with this technique.Methods. All patients undergoing PAE before esophagectomy since introduction of this technique in 2004 were compared in a 1: 2 matched-pair analysis with patients without PAE. Matching criteria were type of anastomosis, neoadjuvant treatment, comorbidity, and age. Data were derived from a retrospective chart review from 2000 to 2006 that was perpetuated as a prospective database up to date. Outcome measures were anastomotic leak, overall complications, and hospital stay.Results. Between 2000 and 2009, 102 patients underwent esophagectomy for cancer in our institution with an overall leak rate of 19% and a mortality of 8%. All 19 patients having PAE since 2004 were successfully matched 1: 2 to 38 control patients without PAE; both groups were similar regarding demographics and operation characteristics. Two PAE (11%) and 8 control patients (21%) had an anastomotic leak, but the difference was statistically not significant (p = 0.469). Overall and major complication rates for PAE and control group were 89% versus 79% (p = 0.469) and 37% versus 34% (p = 1.000), respectively. Median intensive care unit and hospital stay were 3 versus 3 days (p = 1.000) and 22 versus 17 days (p = 0.321), respectively.Conclusions. In our experience, PAE has no significant impact on complications and anastomotic leak in particular after esophagectomy. (Ann Thorac Surg 2011;91:1556-61) (C) 2011 by The Society of Thoracic Surgeons

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neuropeptide Y (NPY) is a peptide with vasoconstrictor properties known to be present in the central nervous system as well as in sympathetic nerve endings and the adrenal medulla. The purposes of this study were to investigate in normotensive conscious rats the effects of nonpressor doses of NPY on cardiac output and regional blood flow distribution (using radiolabeled microspheres) as well as on plasma renin activity, plasma catecholamine and vasopressin levels. NPY (0.1 microgram/min) infused i.v. for 30 min modified neither blood pressure nor heart rate. Cardiac index was at comparable levels in NPY- as in vehicle-treated rats (17.7 +/- 1.6, n = 8, vs. 21.3 +/- 0.9 ml/min/100 g, n = 8, mean +/- S.E.M.). There was no significant difference in regional blood flow distribution between the two groups of rats, except for the large intestine (0.42 +/- 0.06 vs. 0.71 +/- 0.1 ml/min/g in NPY- and vehicle-treated rats, respectively, P less than .05). Basal plasma renin activity and catecholamine levels were not modified by NPY whereas plasma vasopressin levels were lower (P less than .05) in rats given NPY (0.76 +/- 0.3 pg/ml, n = 8) than in those having received the vehicle (2.2 +/- 0.4 pg/ml).(ABSTRACT TRUNCATED AT 250 WORDS)