71 resultados para Andral, Gr


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The NLRP3 inflammasome acts as a danger signal sensor that triggers and coordinates the inflammatory response upon infectious insults or tissue injury and damage. However, the role of the NLRP3 inflammasome in natural killer (NK) cell-mediated control of tumor immunity is poorly understood. Here, we show in a model of chemical-induced carcinogenesis and a series of experimental and spontaneous metastases models that mice lacking NLRP3 display significantly reduced tumor burden than control wild-type (WT) mice. The suppression of spontaneous and experimental tumor metastases and methylcholanthrene (MCA)-induced sarcomas in mice deficient for NLRP3 was NK cell and IFN-γ-dependent. Focusing on the amenable B16F10 experimental lung metastases model, we determined that expression of NLRP3 in bone marrow-derived cells was necessary for optimal tumor metastasis. Tumor-driven expansion of CD11b(+)Gr-1(intermediate) (Gr-1(int)) myeloid cells within the lung tumor microenvironment of NLRP3(-/-) mice was coincident with increased lung infiltrating activated NK cells and an enhanced antimetastatic response. The CD11b(+)Gr-1(int) myeloid cells displayed a unique cell surface phenotype and were characterized by their elevated production of CCL5 and CXCL9 chemokines. Adoptive transfer of this population into WT mice enhanced NK cell numbers in, and suppression of, B16F10 lung metastases. Together, these data suggested that NLRP3 is an important suppressor of NK cell-mediated control of carcinogenesis and metastases and identify CD11b(+)Gr-1(int) myeloid cells that promote NK cell antimetastatic function. Cancer Res; 72(22); 5721-32. ©2012 AACR.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We analyze here the relation between alternative splicing and gene duplication in light of recent genomic data, with a focus on the human genome. We show that the previously reported negative correlation between level of alternative splicing and family size no longer holds true. We clarify this pattern and show that it is sufficiently explained by two factors. First, genes progressively gain new splice variants with time. The gain is consistent with a selectively relaxed regime, until purifying selection slows it down as aging genes accumulate a large number of variants. Second, we show that duplication does not lead to a loss of splice forms, but rather that genes with low levels of alternative splicing tend to duplicate more frequently. This leads us to reconsider the role of alternative splicing in duplicate retention.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Odorous chemicals are detected by the mouse main olfactory epithelium (MOE) by about 1100 types of olfactory receptors (OR) expressed by olfactory sensory neurons (OSNs). Each mature OSN is thought to express only one allele of a single OR gene. Major impediments to understand the transcriptional control of OR gene expression are the lack of a proper characterization of OR transcription start sites (TSSs) and promoters, and of regulatory transcripts at OR loci. We have applied the nanoCAGE technology to profile the transcriptome and the active promoters in the MOE. nanoCAGE analysis revealed the map and architecture of promoters for 87.5% of the mouse OR genes, as well as the expression of many novel noncoding RNAs including antisense transcripts. We identified candidate transcription factors for OR gene expression and among them confirmed by chromatin immunoprecipitation the binding of TBP, EBF1 (OLF1), and MEF2A to OR promoters. Finally, we showed that a short genomic fragment flanking the major TSS of the OR gene Olfr160 (M72) can drive OSN-specific expression in transgenic mice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Corticosteroids (aldosterone, cortisol/corticosterone) exert direct functional effects on cardiomyocytes. However, gene networks activated by corticosteroids in cardiomyocytes, as well as the involvement of the mineralocorticoid receptor (MR) vs the glucocorticoid receptor (GR) in these effects, remain largely unknown. Here we characterized the corticosteroid-dependent transcriptome in primary culture of neonatal mouse cardiomyocytes treated with 10(-6) M aldosterone, a concentration predicted to occupy both MR and GR. Serial analysis of gene expression revealed 101 aldosterone-regulated genes. The MR/GR specificity was characterized for one regulated transcript, namely ecto-ADP-ribosyltransferase-3 (Art3). Using cardiomyocytes from GR(null/null) or MR(null/null) mice we demonstrate that in GR(null/null) cardiomyocytes the response is abrogated, but it is fully maintained in MR(null/null) cardiomyocytes. We conclude that Art3 expression is regulated exclusively via the GR. Our study identifies a new set of corticosteroid-regulated genes in cardiomyocytes and demonstrates a new approach to studying the selectivity of MR- vs GR-dependent effects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: Consultations with patients suffering from chronic pain without objective findings represent a challenge fo r family doctors (FDs). A mutual lack of understanding may arise, which threatens the doctor-patient relationship and may lead to dissatisfaction of both patient and doctor and to a breakdown of the therapeutic alliance. Objectives: This study aims to investigate FDs' potential protective practices to preserve the doctor-patient relationship during this type of consultation. Method: In the first step of this qualitative research, I carried out a range of 10 se- mi-structured interviews with FDs to explore their reported practices and repre- sentations during consultations with people suffering from chronic pain without objective findings. The interviews' transcripts were integrally analysed with computer-assisted thematic content analysis (QSR NVivo ® ) to highlight the main themes related to the topic in the participants' talk. Results: At this point of the research, two types of FDs' protective practices can be identified: first the use of complementary sources of knowledge in addition to the medical model to provide explanations to patients, second the collaboration with multidisciplinary teams or support gr oups that allow them to share profes- sional expertise and emotional experiences. Conclusion: The findings could be useful to develop ways to improve the follow- up of patients suffering from chronic pain without objective findings and conse- quently the FDs' work satisfaction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Translocations are known to affect the expression of genes at the breakpoints and, in the case of unbalanced translocations, alter the gene copy number. However, a comprehensive understanding of the functional impact of this class of variation is lacking. Here, we have studied the effect of balanced chromosomal rearrangements on gene expression by comparing the transcriptomes of cell lines from controls and individuals with the t(11;22)(q23;q11) translocation. The number of differentially expressed transcripts between translocation-carrying and control cohorts is significantly higher than that observed between control samples alone, suggesting that balanced rearrangements have a greater effect on gene expression than normal variation. Many of the affected genes are located along the length of the derived chromosome 11. We show that this chromosome is concomitantly altered in its spatial organization, occupying a more central position in the nucleus than its nonrearranged counterpart. Derivative 22-mapping chromosome 22 genes, on the other hand, remain in their usual environment. Our results are consistent with recent studies that experimentally altered nuclear organization, and indicated that nuclear position plays a functional role in regulating the expression of some genes in mammalian cells. Our study suggests that chromosomal translocations can result in hitherto unforeseen, large-scale changes in gene expression that are the consequence of alterations in normal chromosome territory positioning. This has consequences for the patterns of gene expression change seen during tumorigenesis-associated genome instability and during the karyotype changes that lead to speciation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transcriptional cycling of activated glucocorticoid receptor (GR) and ultradian glucocorticoid secretion are well established processes. Ultradian hormone release is now shown to result in pulsatile gene transcription through dynamic exchange of GR with the target-gene promoter and GR cycling through the chaperone machinery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

MicroRNAs (miRNAs) are major post-transcriptional regulators of gene expression, yet their origins and functional evolution in mammals remain little understood due to the lack of appropriate comparative data. Using RNA sequencing, we have generated extensive and comparable miRNA data for five organs in six species that represent all main mammalian lineages and birds (the evolutionary outgroup) with the aim to unravel the evolution of mammalian miRNAs. Our analyses reveal an overall expansion of miRNA repertoires in mammals, with threefold accelerated birth rates of miRNA families in placentals and marsupials, facilitated by the de novo emergence of miRNAs in host gene introns. Generally, our analyses suggest a high rate of miRNA family turnover in mammals with many newly emerged miRNA families being lost soon after their formation. Selectively preserved mammalian miRNA families gradually evolved higher expression levels, as well as altered mature sequences and target gene repertoires, and were apparently mainly recruited to exert regulatory functions in nervous tissues. However, miRNAs that originated on the X chromosome evolved high expression levels and potentially diverse functions during spermatogenesis, including meiosis, through selectively driven duplication-divergence processes. Overall, our study thus provides detailed insights into the birth and evolution of mammalian miRNA genes and the associated selective forces.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glucocorticoids reduce diabetic macular edema, but the mechanisms underlying glucocorticoid effects are imperfectly elucidated. Glucocorticoids may bind to glucocorticoid (GR) and mineralocorticoid (MR) receptors. We hypothesize that MR activation may influence retinal hydration. The effect of the MR agonist aldosterone (24 h) on ion/water channel expression (real-time PCR, Western blot, immunofluorescence) was investigated on cultured retinal Müller glial cells (RMGs, which contribute to fluid homeostasis in the retina), in Lewis rat retinal explants, and in retinas from aldosterone-injected eyes. We evidenced cell-specific expression of MR, GR, and 11-beta-hydroxysteroid dehydrogenase type II. Aldosterone significantly enhances expression of sodium and potassium channels ENaC-alpha (6.5-fold) and Kir4.1 (1.9-fold) through MR and GR occupancy, whereas aquaporin 4 (AQP4, 2.9-fold) up-regulation is MR-selective. Aldosterone intravitreous injection induces retinal swelling (24% increase compared to sham-injected eyes) and activation of RMGs. It promotes additional localization of Kir4.1 and AQP4 toward apical microvilli of RMGs. Our results highlight the mineralocorticoid-sensitivity of the neuroretina and show that aldosterone controls hydration of the healthy retina through regulation of ion/water channels expression in RMGs. These results provide a rationale for future investigations of abnormal MR signaling in the pathological retina.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Résumé : Le virus tumoral de la glande mammaire de la souris (MMTV) est un rétrovirus provoquant le développement de tumeurs dans les glandes mammaires des souris susceptibles femelles. Au cours de son évolution, le virus s'est adapté et s'exprime dans des cellules spécialisées. Les lymphocytes B sont les premières cellules infectées et elles sont essentielles pour la propagation de l'infection aux glandes mammaires. Dans notre étude, le virus MMTV a été utilisé afin d'examiner les voies de signalisation induites par les glucocorticoïdes (dexaméthasone (dex), une hormone stéroïdienne) et le transforming growth factor-f3 (TGF-P, une cytokine), deux molécules impliquées dans l'activation de la transcription à partir du promoteur du MMTV dans les cellules B. Le TGF-P seul n'influence pas l'activité du promoteur du MMTV. Par contre, en synergie avec dex, le TGF-P provoque une super-induction de l'expression du promoteur par rapport à une stimulation par le glucocorticoïde seul. Cette super-induction est régulée par une famille de protéines, les Smads. Ainsi, dans les lymphocytes B, l'utilisation du MMTV a permis de mettre en évidence une nouvelle synergie entre les glueocortieoïdes et le TGF-p. pans ce travail, l'utilisation d'inhibiteurs pharmacologiques et de mutants « dominant-négatifs » nous a pet mis de démontrer qu'une Protéine Kinase C delta (PKC5) active est impliquée dans la transduction du signal lors de la réponse au dex ainsi que celle au TGF-P. Néanmoins, la PKC5 est régulée différemment dans chaque voie spécifique : la voie du TGF-p nécessitait l'activation du PKC5 par diacylglycerol (DAG) et la phosphorylation de tyrosines spécifiques, alors que la voie impliquant les glucocorticoïdes ne le nécessitait pas. Nous avons aussi démontré qu'une tyrosine kinase de la famille Src est responsable de la phosphorylation des tyrosines sur la PKC5. Les essais de kinase in vitro nous ont permis de découvrir que plusieurs Src kinases peuvent phosphoryler la PKC6 dans les cellules B et qu'elles étaient constitutivement actives. Enfin, nous avons montré qu'il existe une interaction protéine - protéine induite par dex, entre le récepteur aux glucocorticoïdes (GR) et la PKC5 dans les cellules B, une association qui n'a pas été démontrée auparavant. Par ailleurs, nous avons analysé les domaines d'interactions entre PKC5 et GR en utilisant les essais de «GST pull-down». Nos résultats montrent que le domaine régulateur de la PKC5 et celui qui interagit avec l'ADN du GR sont impliqués. En résumé, nous avons trouvé que dans une lignée lymphocytaire B, le virus MMTV utilise des mécanismes pour réguler à la fois la transcription et la voie de signalisation qui sont différents de ceux utilisés dans les cellules mammaires épithéliales et les fibroblastes. Nos découvertes pourraient être utilisées comme modèles pour l'étude de gènes cellulaires impliqués dans des processus tels qu'inflammation, immunité ou cancérogénèse. Summary: Mouse Mammary Tumor Virus (MMTV) is a retrovirus that causes tumors in the mammary glands of susceptible female mice and has adapted evolutionarily to be expressed in specialized cells. The B lymphocytes are the first cells to be infected by the MMTV and are essential for the spread of infection to the mammary glands. Here, we used the MMTV as a model system to investigate the signalling cascade induced by giucocorticoids (dexamethasone, "dex", a steroid hormone), and by Transforming Growth Factor-beta (TGF-P, a cytokine) leading to its transcriptional activation in B lymphocytes. By itself, TGF-I3 does not affect the basal activity of the MMTV promoter. However, TGF-13 significantly increases glucocorticoid-induced expression, through its effectors, the Smad factors. Thus, MMTV in B cells demonstrates a novel synergism between glucocorticoids and TGF-16. In this thesis project, we present evidence, based on the use of pharmacological inhibitors and of dominant-negative mutants, that an active Protein Kinase C delta (PKC6) is required as a signal transducer for the dex response and for the TGF-P superinduction as well. The PKC6 is differentially regulated in each specific pathway: whereas the TGF-13 superinduction required PKC6 to be activated by diacylglycerol (DAG) and to be phosphorylated at specific tyrosine residues, the glueocorticoid-induced pathway did not. We also showed that a protein tyrosine kinase of the Src family is responsible for the phosphorylation of tyrosines on PKC6. By performing in vitro kinase assays, we found that several Src kinases of B cells were able to phosphorylate PKC6 and that they were constitutively active. Finally, we demonstrate a dex-dependent functional protein-protein interaction between the glucocorticoid receptor (GR) and PKC6 in B cells, an association that has not been previously described. We further analysed the interacting domains of PKG6 and GR using in vitro GST pull-down assays, whereby the regulatory domain of PKC6 and the extended DNA-binding domain of the GR were involved. In summary, we found that in B-lymphoid cell lines, MMTV uses novel mechanisms of transcriptional control and signal transduction that are different from those at work in mammary epithelial or fibroblastic cells. These findings will be used as model for cellular genes involved in cellular processes such as immune functions, inflammation, or oncogenic transformation that may have a similar pattern of regulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SUMMARY: BMD and clinical risk factors predict hip and other osteoporotic fractures. The combination of clinical risk factors and BMD provide higher specificity and sensitivity than either alone. INTRODUCTION AND HYPOTHESES: To develop a risk assessment tool based on clinical risk factors (CRFs) with and without BMD. METHODS: Nine population-based studies were studied in which BMD and CRFs were documented at baseline. Poisson regression models were developed for hip fracture and other osteoporotic fractures, with and without hip BMD. Fracture risk was expressed as gradient of risk (GR, risk ratio/SD change in risk score). RESULTS: CRFs alone predicted hip fracture with a GR of 2.1/SD at the age of 50 years and decreased with age. The use of BMD alone provided a higher GR (3.7/SD), and was improved further with the combined use of CRFs and BMD (4.2/SD). For other osteoporotic fractures, the GRs were lower than for hip fracture. The GR with CRFs alone was 1.4/SD at the age of 50 years, similar to that provided by BMD (GR = 1.4/SD) and was not markedly increased by the combination (GR = 1.4/SD). The performance characteristics of clinical risk factors with and without BMD were validated in eleven independent population-based cohorts. CONCLUSIONS: The models developed provide the basis for the integrated use of validated clinical risk factors in men and women to aid in fracture risk prediction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Steroid hormone receptors activate specific gene transcription by binding as hormone-receptor complexes to short DNA enhancer-like elements termed hormone response elements (HREs). We have shown previously that a highly conserved 66 amino acid region of the oestrogen (ER) and glucocorticoid (GR) receptors, which corresponds to part of the receptor DNA binding domain (region C) is responsible for determining the specificity of target gene activation. This region contains two sub-regions (CI and CII) analogous to the 'zinc-fingers' of the transcription factor TFIIIA. We show here that CI and CII appear to be separate domains both involved in DNA binding. Furthermore, using chimaeric ERs in which either the first (N-terminal) (CI) or second (CII) 'zinc finger' region has been exchanged with that of the GR, indicates that it is the first 'zinc finger' which largely determines target gene specificity. We suggest that receptor recognition of the HRE is analogous to that of the helix-turn-helix DNA binding motif in that the receptor binds to DNA as a dimer with the first 'zinc finger' lying in the major groove recognizing one half of the palindromic HRE, and that protein-DNA interaction is stabilized through non-specific DNA binding and dimer interactions contributed by the second 'zinc finger'.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The publication of a draft of the human genome and of large collections of transcribed sequences has made it possible to study the complex relationship between the transcriptome and the genome. In the work presented here, we have focused on mapping mRNA 3' ends onto the genome by use of the raw data generated by the expressed sequence tag (EST) sequencing projects. We find that at least half of the human genes encode multiple transcripts whose polyadenylation is driven by multiple signals. The corresponding transcript 3' ends are spread over distances in the kilobase range. This finding has profound implications for our understanding of gene expression regulation and of the diversity of human transcripts, for the design of cDNA microarray probes, and for the interpretation of gene expression profiling experiments.