33 resultados para ARTIFACT
Resumo:
It is shown that spatially selective inversion and saturation can be achieved by concatenation of RF pulses with lower flip angles. A concatenation rule which enables global doubling of the flip angle of any given excitation pulse applied to initial z magnetization is proposed. In this fashion, the selectivity of the single pulse is preserved, making the high selectivity achievable in the low flip-angle regime available for inversion and large flip-angle saturation purposes. The profile quality achievable with exemplary concatenated pulses is investigated in comparison with adiabatic inversion. It is verified that by using concatenated inversion in the transfer insensitive labeling technique (TILT), the MT artifact is suppressed. Copyright 2000 Academic Press.
Resumo:
Members of the Chlamydiales order all share a biphasic lifecycle alternating between small infectious particles, the elementary bodies (EBs) and larger intracellular forms able to replicate, the reticulate bodies. Whereas the classical Chlamydia usually harbours round-shaped EBs, some members of the Chlamydia-related families display crescent and star-shaped morphologies by electron microscopy. To determine the impact of fixative methods on the shape of the bacterial cells, different buffer and fixative combinations were tested on purified EBs of Criblamydia sequanensis, Estrella lausannensis, Parachlamydia acanthamoebae, and Waddlia chondrophila. A linear discriminant analysis was performed on particle metrics extracted from electron microscopy images to recognize crescent, round, star and intermediary forms. Depending on the buffer and fixatives used, a mixture of alternative shapes were observed in varying proportions with stars and crescents being more frequent in C. sequanensis and P. acanthamoebae, respectively. No tested buffer and chemical fixative preserved ideally the round shape of a majority of bacteria and other methods such as deep-freezing and cryofixation should be applied. Although crescent and star shapes could represent a fixation artifact, they certainly point towards a diverse composition and organization of membrane proteins or intracellular structures rather than being a distinct developmental stage.
Resumo:
Recently graph theory and complex networks have been widely used as a mean to model functionality of the brain. Among different neuroimaging techniques available for constructing the brain functional networks, electroencephalography (EEG) with its high temporal resolution is a useful instrument of the analysis of functional interdependencies between different brain regions. Alzheimer's disease (AD) is a neurodegenerative disease, which leads to substantial cognitive decline, and eventually, dementia in aged people. To achieve a deeper insight into the behavior of functional cerebral networks in AD, here we study their synchronizability in 17 newly diagnosed AD patients compared to 17 healthy control subjects at no-task, eyes-closed condition. The cross-correlation of artifact-free EEGs was used to construct brain functional networks. The extracted networks were then tested for their synchronization properties by calculating the eigenratio of the Laplacian matrix of the connection graph, i.e., the largest eigenvalue divided by the second smallest one. In AD patients, we found an increase in the eigenratio, i.e., a decrease in the synchronizability of brain networks across delta, alpha, beta, and gamma EEG frequencies within the wide range of network costs. The finding indicates the destruction of functional brain networks in early AD.
Resumo:
Attempts to use a stimulated echo acquisition mode (STEAM) in cardiac imaging are impeded by imaging artifacts that result in signal attenuation and nulling of the cardiac tissue. In this work, we present a method to reduce this artifact by acquiring two sets of stimulated echo images with two different demodulations. The resulting two images are combined to recover the signal loss and weighted to compensate for possible deformation-dependent intensity variation. Numerical simulations were used to validate the theory. Also, the proposed correction method was applied to in vivo imaging of normal volunteers (n = 6) and animal models with induced infarction (n = 3). The results show the ability of the method to recover the lost myocardial signal and generate artifact-free black-blood cardiac images.
Resumo:
The authors compared radial steady-state free precession (SSFP) coronary magnetic resonance (MR) angiography, cartesian k-space sampling SSFP coronary MR angiography, and gradient-echo coronary MR angiography in 16 healthy adults and four pilot study patients. Standard gradient-echo MR imaging with a T2 preparatory pulse and cartesian k-space sampling was the reference technique. Image quality was compared by using subjective motion artifact level and objective contrast-to-noise ratio and vessel sharpness. Radial SSFP, compared with cartesian SSFP and gradient-echo MR angiography, resulted in reduced motion artifacts and superior vessel sharpness. Cartesian SSFP resulted in increased motion artifacts (P <.05). Contrast-to-noise ratio with radial SSFP was lower than that with cartesian SSFP and similar to that with the reference technique. Radial SSFP coronary MR angiography appears preferable because of improved definition of vessel borders.
Resumo:
A cardiac-triggered, free-breathing, 3D balanced FFE projection renal MR angiography (MRA) technique with a 2D pencil beam aortic labeling pulse for selective aortic spin tagging was developed. For respiratory motion artifact suppression during free breathing, a prospective real-time navigator was implemented for renal MRA. Images obtained with the new approach were compared with standard contrast-enhanced (CE) 3D breath-hold MRA in seven swine. Signal properties and vessel visualization were analyzed. With the presented technique, high-resolution, high-contrast renal projection MRA with superior vessel length visualization (including a greater visible number of distal branches of the renal arteries) compared to standard breath-hold CE-MRA was obtained. The present results warrant clinical studies in patients with renal artery disease.
Resumo:
Diffusion magnetic resonance studies of the brain are typically performed using volume coils. Although in human brain this leads to a near optimal filling factor, studies of rodent brain must contend with the fact that only a fraction of the head volume can be ascribed to the brain. The use of surface coil as transceiver increases Signal-to-Noise Ratio (SNR), reduces radiofrequency power requirements and opens the possibility of parallel transmit schemes, likely to allow efficient acquisition schemes, of critical importance for reducing the long scan times implicated in diffusion tensor imaging. This study demonstrates the implementation of a semiadiabatic echo planar imaging sequence (echo time=40 ms, four interleaves) at 14.1T using a quadrature surface coil as transceiver. It resulted in artifact free images with excellent SNR throughout the brain. Diffusion tensor derived parameters obtained within the rat brain were in excellent agreement with reported values.
Resumo:
Staphylococcus aureus is an opportunistic pathogen whose infectious capacity depends on surface proteins, which enable bacteria to colonize and invade host tissues and cells. We analyzed "trypsin-shaved" surface proteins of S. aureus cultures by high resolution LC-MS/MS at different growth stages and culture conditions. Some modified peptides were identified, with a mass shift corresponding to the addition of a CH(2)O group (+30.0106u). We present evidence that this shift corresponds to a hyxdroxymethylation of asparagine and glutamine residues. This known but poorly documented post-translational modification was only found in a few proteins of S. aureus grown under specific conditions. This specificity seemed to exclude the hypothesis of an artifact due to sample preparation. Altogether hydroxymethylation was observed in 35 peptides from 15 proteins in our dataset, which corresponded to 41 modified sites, 35 of them being univocally localized. While no function can currently be assigned to this post-translational modification, we hypothesize that it could be linked to modulation of virulence factors, since it was mostly found on some surface proteins of S. aureus.
Resumo:
When individuals learn by trial-and-error, they perform randomly chosen actions and then reinforce those actions that led to a high payoff. However, individuals do not always have to physically perform an action in order to evaluate its consequences. Rather, they may be able to mentally simulate actions and their consequences without actually performing them. Such fictitious learners can select actions with high payoffs without making long chains of trial-and-error learning. Here, we analyze the evolution of an n-dimensional cultural trait (or artifact) by learning, in a payoff landscape with a single optimum. We derive the stochastic learning dynamics of the distance to the optimum in trait space when choice between alternative artifacts follows the standard logit choice rule. We show that for both trial-and-error and fictitious learners, the learning dynamics stabilize at an approximate distance of root n/(2 lambda(e)) away from the optimum, where lambda(e) is an effective learning performance parameter depending on the learning rule under scrutiny. Individual learners are thus unlikely to reach the optimum when traits are complex (n large), and so face a barrier to further improvement of the artifact. We show, however, that this barrier can be significantly reduced in a large population of learners performing payoff-biased social learning, in which case lambda(e) becomes proportional to population size. Overall, our results illustrate the effects of errors in learning, levels of cognition, and population size for the evolution of complex cultural traits. (C) 2013 Elsevier Inc. All rights reserved.
Resumo:
There is ample epidemiological and anecdotal evidence that a PFO increases the risk of stroke both in young and elderly patients, although only in a modest way: PFOs are more prevalent in patients with cryptogenic (unexplained) stroke than in healthy subjects, and are more prevalent in cryptogenic stroke than in strokes of other causes. Furthermore, multiple case series confirm an association of paradoxical embolism across a PFO in patients with deep vein thrombosis and/or pulmonary emboli.2. Is stroke recurrence risk in PFO-patients really not elevated when compared to PFO-free patients, as suggested by traditional observational studies? This finding is an epidemiological artifact called "the paradox of recurrence risk research" (Dahabreh & Kent, JAMA 2011) and is due to one (minor) risk factor, such as PFO, being wiped out by other, stronger risk factors in the control population.3. Having identified PFO as a risk factor for a first stroke and probably also for recurrences, we have to treat it, because treating risk factors always has paid off. No one would nowadays question the aggressive treatment of other risk factors of stroke such as hypertension, atrial fibrillation, smoking, or hyperlipidemia.4. In order to be effective, the preventive treatment has to control the risk factor (i.e. close effectively the PFO), and has to have little or no side effects. Both these conditions are now fulfilled thanks to increasing expertise of cardiologists with technically advanced closure devices and solid back up by multidisciplinary stroke teams.5. Closing a PFO does not dispense us from treating other stroke risk factors aggressively, given that these are cumulative with PFO.6. The most frequent reason why patients have a stroke recurrence after PFO closure is not that closure is ineffective, but that the initial stroke etiology is insufficiently investigated and not PFO related, and that the recurrence is due to another mechanism because of poor risk factor control.7. Similarly, the randomized CLOSURE study was negative because a) patients were included who had a low chance that their initial event was due to the PFO, b) patients were selected with a low chance that a PFO-related recurrence would occur, c) there was an unacceptable high rate of closure-related side effects, and d) the number of randomized patients was too small for a prevention trial.8. It is only a question of time until a sufficiently large randomized clinical trial with true PFO-related stroke patients and a high PFO-related recurrence risk will be performed and show the effectiveness of this closure9. PFO being a rather modest risk factor for stroke does not mean we should prevent our patients from getting the best available prevention by the best physicians in the best stroke centers Therefore, a PFO-closure performed by an excellent cardiologist following the recommendation of an expert neurovascular specialist after a thorough workup in a leading stroke center is one of the most effective stroke prevention treatments available in 2011.
Resumo:
The goal of this dissertation is to find and provide the basis for a managerial tool that allows a firm to easily express its business logic. The methodological basis for this work is design science, where the researcher builds an artifact to solve a specific problem. In this case the aim is to provide an ontology that makes it possible to explicit a firm's business model. In other words, the proposed artifact helps a firm to formally describe its value proposition, its customers, the relationship with them, the necessary intra- and inter-firm infrastructure and its profit model. Such an ontology is relevant because until now there is no model that expresses a company's global business logic from a pure business point of view. Previous models essentially take an organizational or process perspective or cover only parts of a firm's business logic. The four main pillars of the ontology, which are inspired by management science and enterprise- and processmodeling, are product, customer interface, infrastructure and finance. The ontology is validated by case studies, a panel of experts and managers. The dissertation also provides a software prototype to capture a company's business model in an information system. The last part of the thesis consists of a demonstration of the value of the ontology in business strategy and Information Systems (IS) alignment. Structure of this thesis: The dissertation is structured in nine parts: Chapter 1 presents the motivations of this research, the research methodology with which the goals shall be achieved and why this dissertation present a contribution to research. Chapter 2 investigates the origins, the term and the concept of business models. It defines what is meant by business models in this dissertation and how they are situated in the context of the firm. In addition this chapter outlines the possible uses of the business model concept. Chapter 3 gives an overview of the research done in the field of business models and enterprise ontologies. Chapter 4 introduces the major contribution of this dissertation: the business model ontology. In this part of the thesis the elements, attributes and relationships of the ontology are explained and described in detail. Chapter 5 presents a case study of the Montreux Jazz Festival which's business model was captured by applying the structure and concepts of the ontology. In fact, it gives an impression of how a business model description based on the ontology looks like. Chapter 6 shows an instantiation of the ontology into a prototype tool: the Business Model Modelling Language BM2L. This is an XML-based description language that allows to capture and describe the business model of a firm and has a large potential for further applications. Chapter 7 is about the evaluation of the business model ontology. The evaluation builds on literature review, a set of interviews with practitioners and case studies. Chapter 8 gives an outlook on possible future research and applications of the business model ontology. The main areas of interest are alignment of business and information technology IT/information systems IS and business model comparison. Finally, chapter 9 presents some conclusions.
Resumo:
Evidences collected from smartphones users show a growing desire of personalization offered by services for mobile devices. However, the need to accurately identify users' contexts has important implications for user's privacy and it increases the amount of trust, which users are requested to have in the service providers. In this paper, we introduce a model that describes the role of personalization and control in users' assessment of cost and benefits associated to the disclosure of private information. We present an instantiation of such model, a context-aware application for smartphones based on the Android operating system, in which users' private information are protected. Focus group interviews were conducted to examine users' privacy concerns before and after having used our application. Obtained results confirm the utility of our artifact and provide support to our theoretical model, which extends previous literature on privacy calculus and user's acceptance of context-aware technology.
Resumo:
The enhanced functional sensitivity offered by ultra-high field imaging may significantly benefit simultaneous EEG-fMRI studies, but the concurrent increases in artifact contamination can strongly compromise EEG data quality. In the present study, we focus on EEG artifacts created by head motion in the static B0 field. A novel approach for motion artifact detection is proposed, based on a simple modification of a commercial EEG cap, in which four electrodes are non-permanently adapted to record only magnetic induction effects. Simultaneous EEG-fMRI data were acquired with this setup, at 7T, from healthy volunteers undergoing a reversing-checkerboard visual stimulation paradigm. Data analysis assisted by the motion sensors revealed that, after gradient artifact correction, EEG signal variance was largely dominated by pulse artifacts (81-93%), but contributions from spontaneous motion (4-13%) were still comparable to or even larger than those of actual neuronal activity (3-9%). Multiple approaches were tested to determine the most effective procedure for denoising EEG data incorporating motion sensor information. Optimal results were obtained by applying an initial pulse artifact correction step (AAS-based), followed by motion artifact correction (based on the motion sensors) and ICA denoising. On average, motion artifact correction (after AAS) yielded a 61% reduction in signal power and a 62% increase in VEP trial-by-trial consistency. Combined with ICA, these improvements rose to a 74% power reduction and an 86% increase in trial consistency. Overall, the improvements achieved were well appreciable at single-subject and single-trial levels, and set an encouraging quality mark for simultaneous EEG-fMRI at ultra-high field.
Resumo:
In recent years, technological advances have allowed manufacturers to implement dual-energy computed tomography (DECT) on clinical scanners. With its unique ability to differentiate basis materials by their atomic number, DECT has opened new perspectives in imaging. DECT has been used successfully in musculoskeletal imaging with applications ranging from detection, characterization, and quantification of crystal and iron deposits; to simulation of noncalcium (improving the visualization of bone marrow lesions) or noniodine images. Furthermore, the data acquired with DECT can be postprocessed to generate monoenergetic images of varying kiloelectron volts, providing new methods for image contrast optimization as well as metal artifact reduction. The first part of this article reviews the basic principles and technical aspects of DECT including radiation dose considerations. The second part focuses on applications of DECT to musculoskeletal imaging including gout and other crystal-induced arthropathies, virtual noncalcium images for the study of bone marrow lesions, the study of collagenous structures, applications in computed tomography arthrography, as well as the detection of hemosiderin and metal particles.
Resumo:
In recent years, technological advances have allowed manufacturers to implement dual-energy computed tomography (DECT) on clinical scanners. With its unique ability to differentiate basis materials by their atomic number, DECT has opened new perspectives in imaging. DECT has been successfully used in musculoskeletal imaging with applications ranging from detection, characterization, and quantification of crystal and iron deposits, to simulation of noncalcium (improving the visualization of bone marrow lesions) or noniodine images. Furthermore, the data acquired with DECT can be postprocessed to generate monoenergetic images of varying kiloelectron volts, providing new methods for image contrast optimization as well as metal artifact reduction. The first part of this article reviews the basic principles and technical aspects of DECT including radiation dose considerations. The second part focuses on applications of DECT to musculoskeletal imaging including gout and other crystal-induced arthropathies, virtual noncalcium images for the study of bone marrow lesions, the study of collagenous structures, applications in computed tomography arthrography, as well as the detection of hemosiderin and metal particles.