23 resultados para AHP - Analytic Hierarchy Proces


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this dissertation is to better understand how individual employees? values and personality traits influence their attitudes toward market orientation; how such attitudes impact their market-oriented behaviors; and how in turn, these behaviors lead to their superior individual performance. To investigate these relationships, an empirical study was conducted in the French speaking part of Switzerland and data were collected from a sample of service firms? employees from diverse departments and hierarchical levels. To a large extent, the results support the hypothesis of a hierarchical chain moving from value / personality to attitude to behavior to individual performance in relation to market orientation. Le sujet de cette thèse de doctorat est de mieux comprendre comment les valeurs et les traits de personnalité des employés influencent leurs attitudes envers l'orientation vers le marché ; comment ces attitudes ont un effet sur les comportements orientés vers le marché de ces employés et enfin, comment ces comportements conduisent à une meilleure performance individuelle. Afin d'étudier ces relations, une enquête a été conduite en Suisse romande et des données ont été collectées auprès d'un échantillon d'employés d'entreprises de service de différents départements et niveaux hiérarchiques. Les résultats sont concordants avec l'hypothèse d'une chaîne causale allant des valeurs / traits de personnalité aux attitudes, aux comportements et finalement à la performance individuelle dans le contexte de l'orientation vers le marché.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La hiérarchie de Wagner constitue à ce jour la plus fine classification des langages ω-réguliers. Par ailleurs, l'approche algébrique de la théorie de langages formels montre que ces ensembles ω-réguliers correspondent précisément aux langages reconnaissables par des ω-semigroupes finis pointés. Ce travail s'inscrit dans ce contexte en fournissant une description complète de la contrepartie algébrique de la hiérarchie de Wagner, et ce par le biais de la théorie descriptive des jeux de Wadge. Plus précisément, nous montrons d'abord que le degré de Wagner d'un langage ω-régulier est effectivement un invariant syntaxique. Nous définissons ensuite une relation de réduction entre ω-semigroupes pointés par le biais d'un jeu infini de type Wadge. La collection de ces structures algébriques ordonnée par cette relation apparaît alors comme étant isomorphe à la hiérarchie de Wagner, soit un quasi bon ordre décidable de largeur 2 et de hauteur ω. Nous exposons par la suite une procédure de décidabilité de cette hiérarchie algébrique : on décrit une représentation graphique des ω-semigroupes finis pointés, puis un algorithme sur ces structures graphiques qui calcule le degré de Wagner de n'importe quel élément. Ainsi le degré de Wagner de tout langage ω-régulier peut être calculé de manière effective directement sur son image syntaxique. Nous montrons ensuite comment construire directement et inductivement une structure de n''importe quel degré. Nous terminons par une description détaillée des invariants algébriques qui caractérisent tous les degrés de cette hiérarchie. Abstract The Wagner hierarchy is known so far to be the most refined topological classification of ω-rational languages. Also, the algebraic study of formal languages shows that these ω-rational sets correspond precisely to the languages recognizable by finite pointed ω-semigroups. Within this framework, we provide a construction of the algebraic counterpart of the Wagner hierarchy. We adopt a hierarchical game approach, by translating the Wadge theory from the ω-rational language to the ω-semigroup context. More precisely, we first show that the Wagner degree is indeed a syntactic invariant. We then define a reduction relation on finite pointed ω-semigroups by means of a Wadge-like infinite two-player game. The collection of these algebraic structures ordered by this reduction is then proven to be isomorphic to the Wagner hierarchy, namely a well-founded and decidable partial ordering of width 2 and height $\omega^\omega$. We also describe a decidability procedure of this hierarchy: we introduce a graph representation of finite pointed ω-semigroups allowing to compute their precise Wagner degrees. The Wagner degree of every ω-rational language can therefore be computed directly on its syntactic image. We then show how to build a finite pointed ω-semigroup of any given Wagner degree. We finally describe the algebraic invariants characterizing every Wagner degree of this hierarchy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gender inequalities remain an issue in our society and particularly in the workplace. Several factors can explain this gender difference in top-level managerial positions such as career ambitions but also biases against women. In our chapter, we propose a model explaining why gender inequalities and particularly discrimination against women is still present in our societies despite social norms and existing legislation on gender equality. To this purpose, we review research on discrimination through two different approaches, (a) a prejudice approach through the justification-suppression model developed by Crandall and Eshleman (2003) and (b) a power approach through the social dominance theory (Pratto, Sidanius, Stallworth, & Malle, 1994; Sidanius & Pratto, 1999). In our work, we integrate these two approaches and propose a model of gender prejudice, power and discrimination. The integration of these two approaches contributes to a better understanding of how discrimination against women is formed and maintained over time.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We apply the cognitive hierarchy model of Camerer et al. (Q J Econ 119(3):861-898, 2004)-where players have different levels of reasoning-to Huck et al. (Games Econ Behav 38:240-264, 2002) discrete version of Hamilton and Slutsky (Games Econ Behav 2:29-46, 1990) action commitment game-a duopoly with endogenous timing of entry. We show that, for an empirically reasonable average number of thinking steps, the model rules out Stackelberg equilibria, generates Cournot outcomes including delay, and outcomes where the first mover commits to a quantity higher than Cournot but lower than Stackelberg leader. We show that a cognitive hierarchy model with quantal responses can explain the most important features of the experimental data on the action commitment game in (2002). In order to gauge the success of the model in fitting the data, we compare it to a noisy Nash model. We find that the cognitive hierarchy model with quantal responses fits the data better than the noisy Nash model.