426 resultados para Pressure filtration
Resumo:
Synthetic atrial natriuretic peptide, containing 26 amino acids in the rat sequence, L-364, 343 (Ileu-ANP), was infused intravenously at increasing rates (1-40 micrograms/min) into four normal volunteers. Mean intraarterial blood pressure decreased and heart rate increased in cumulative-dose-dependent fashion. Skin blood flow as measured with a laser Doppler device rose already with a cumulative dose of 55 micrograms Ileu-ANP and further rises were directly related to dose. The only side effects observed were those accompanying symptomatic hypotension at higher doses. These findings provide strong evidence that Ileu-ANP acts as a vasodilator in normal volunteers.
Resumo:
The prevalence of hypertension in African Americans (AAs) is higher than in other US groups; yet, few have performed genome-wide association studies (GWASs) in AA. Among people of European descent, GWASs have identified genetic variants at 13 loci that are associated with blood pressure. It is unknown if these variants confer susceptibility in people of African ancestry. Here, we examined genome-wide and candidate gene associations with systolic blood pressure (SBP) and diastolic blood pressure (DBP) using the Candidate Gene Association Resource (CARe) consortium consisting of 8591 AAs. Genotypes included genome-wide single-nucleotide polymorphism (SNP) data utilizing the Affymetrix 6.0 array with imputation to 2.5 million HapMap SNPs and candidate gene SNP data utilizing a 50K cardiovascular gene-centric array (ITMAT-Broad-CARe [IBC] array). For Affymetrix data, the strongest signal for DBP was rs10474346 (P= 3.6 × 10(-8)) located near GPR98 and ARRDC3. For SBP, the strongest signal was rs2258119 in C21orf91 (P= 4.7 × 10(-8)). The top IBC association for SBP was rs2012318 (P= 6.4 × 10(-6)) near SLC25A42 and for DBP was rs2523586 (P= 1.3 × 10(-6)) near HLA-B. None of the top variants replicated in additional AA (n = 11 882) or European-American (n = 69 899) cohorts. We replicated previously reported European-American blood pressure SNPs in our AA samples (SH2B3, P= 0.009; TBX3-TBX5, P= 0.03; and CSK-ULK3, P= 0.0004). These genetic loci represent the best evidence of genetic influences on SBP and DBP in AAs to date. More broadly, this work supports that notion that blood pressure among AAs is a trait with genetic underpinnings but also with significant complexity.
Resumo:
This study was designed to evaluate in healthy volunteers the renal hemodynamic and tubular effects of the orally active angiotensin II receptor antagonist losartan (DuP 753 or MK 954). Losartan or a placebo was administered to 23 subjects maintained on a high-sodium (200 mmol/d) or a low-sodium (50 mmol/d) diet in a randomized, double-blind, crossover study. The two 6-day diet periods were separated by a 5-day washout period. On day 6, the subjects were water loaded, and blood pressure, renal hemodynamics, and urinary electrolyte excretion were measured for 6 hours after a single 100-mg oral dose of losartan (n = 16) or placebo (n = 7). Losartan induced no significant changes in blood pressure, glomerular filtration rate, or renal blood flow in these water-loaded subjects, whatever the sodium diet. In subjects on a low-salt diet, losartan markedly increased urinary sodium excretion from 115 +/- 9 to 207 +/- 21 mumol/min (P < .05). The fractional excretion of endogenous lithium was unchanged, suggesting no effect of losartan on the early proximal tubule in our experimental conditions. Losartan also increased urine flow rate (from 10.5 +/- 0.4 to 13.1 +/- 0.6 mL/min, P < .05); urinary potassium excretion (from 117 +/- 6.9 to 155 +/- 11 mumol/min); and the excretion of chloride, magnesium, calcium, and phosphate. In subjects on a high-salt diet, similar effects of losartan were observed, but the changes induced by the angiotensin II antagonist did not reach statistical significance. In addition, losartan demonstrated significant uricosuric properties with both sodium diets.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
Background: Screening of elevated blood pressure (BP) in children has been advocated to early identify hypertension. However, identification of children with sustained elevated BP is challenging due to the high BP variability. The value of an elevated BP measure during childhood and adolescence for the prediction of future elevated BP is not well described. Objectives: We assessed the positive (PPV) and negative (NPV) predictive value of high BP for sustained elevated BP in cohorts of children of the Seychelles, a rapidly developing island state in the African region. Methods: Serial school-based surveys of weight, height, and BP were conducted yearly between 1998-2006 among all students of the country in four school grades (kindergarten [G0, mean age (SD): 5.5 (0.4) yr], G4 [9.2 (0.4) yr], G7 [12.5 (0.4) yr] and G10 (15.6 (0.5) yr]. We constituted three cohorts of children examined twice at 3-4 years interval: 4,557 children examined at G0 and G4, 6,198 at G4 and G7, and 6,094 at G7 and G10. The same automated BP measurement devices were used throughout the study. BP was measured twice at each exam and averaged. Obesity and elevated BP were defined using the CDC (BMI_95th sex-, and age-specific percentile) and the NHBPEP criteria (BP_95th sex-, age-, and height specific percentile), respectively. Results: Prevalence of obesity was 6.1% at G0, 7.1% at G4, 7.5% at G7, and 6.5% at G10. Prevalence of elevated BP was 10.2% at G0, 9.9% at G4, 7.1% at G7, and 8.7% at G10. Among children with elevated BP at initial exam, the PPV of keeping elevated BP was low but increased with age: 13% between G0 and G4, 19% between G4 and G7, and 27% between G7 and G10. Among obese children with elevated BP, the PPV was higher: 33%, 35% and 39% respectively. Overall, the probability for children with normal BP to remain in that category 3-4 years later (NPV) was 92%, 95%, and 93%, respectively. By comparison, the PPV for children initially obese to remain obese was much higher at 71%, 71%, and 62% (G7-G10), respectively. The NPV (i.e. the probability of remaining at normal weight) was 94%, 96%, and 98%, respectively. Conclusion: During childhood and adolescence, having an elevated BP at one occasion is a weak predictor of sustained elevated BP 3-4 years later. In obese children, it is a better predictor.
Resumo:
The effects of continuous infusions of 2 synthetic atrial natriuretic peptides Ile12-(3-28) (rANP) and Meth12-(3-28) (hANP) eicosahexapeptides on blood pressure, heart rate, skin blood flow, glomerular filtration rate, renal plasma flow, apparent hepatic blood flow, and carotid blood flow were evaluated in normal volunteers. A rANP infusion at increasing rates (1-40 micrograms/min) induced a decrease in blood pressure, an increase in heart rate and in skin blood flow linearly related to the dose administered. In contrast, hANP infusion at 1 microgram/min for 4 hours induced an initial increase followed by a secondary fall in skin blood flow without blood pressure changes. A 4-hour rANP infusion at 0.5 and 5 mcg/min did not alter glomerular filtration rate but induced a delayed and dose-related fall in renal plasma flow from 531 to 461 (p less than 0.05), and from 554 to 342 ml/min (p less than 0.001) respectively, with a consequential rise in the filtration fraction. The 5 mcg/min dose furthermore significantly reduced blood pressure following a latency period of 2.5 hours. A 2-hours rANP infusion at 0.5 micrograms/min induced a fall in apparent hepatic blood flow from 1,087 to 863 ml/min (p less than 0.01), without simultaneously altering blood pressure. Similarly, a 2-hour hANP infusion at 2 micrograms/min altered neither blood pressure nor carotid blood flow. In conclusion, ANP infusion induced changes in systemic and regional hemodynamics varying in direction, intensity and duration.
Resumo:
Background: Elevated levels of g-glutamyl transferase (GGT) have been associated with subsequent risk of elevated blood pressure (BP), hypertension and diabetes. However, the causality of these relationships has not been addressed. Mendelian randomization refers to the random allocation of alleles at the time of gamete formation. Such allocation is expected to be independent of any behavioural and environmental factors (known or unknown), allowing the analysis of largely unconfounded risk associations that are not due to reverse causation. Methods: We performed a cross-sectional analysis among 4361 participants to the population based CoLaus study. Associations of sex-specific GGT quartiles with systolic BP, diastolic BP and insulin levels were assessed using multivariable linear regression analyses. The rs2017869 GGT1 variant, which explained 1.6% of the variance in GGT levels, was used as an instrument to perform a Mendelian randomization analysis. Results: Median age of the study population was 53 years. After age and sex adjustment, GGT quartiles were strongly associated with systolic and diastolic BP (all p for linear trend <0.0001). After multivariable adjustment, these relationships were significantly attenuated, but remained significant for systolic (b(95%CI)¼1.30 (0.32;2.03), p¼0.007) and diastolic BP (b (95%CI)¼0.57 (0.02;1.13), p¼0.04). Using Mendelian randomization, we observed no positive association of GGT with either systolic BP (b (95%CI)¼-5.68 (-11.51-0.16), p¼0.06) or diastolic BP (b (95%CI)¼ -2.24 (-5.98;1.49) p¼0.24). The association of GGT with insulin was also attenuated after multivariable adjustment. Nevertheless, a strong linear trend persisted in the fully adjusted model (b (95%CI)¼0.07 (0.04;0.09), p<0.0001). Using Mendelian randomization, we observed a similar positive association of GGT with insulin (b (95%CI)¼0.19 (0.01-0.37), p¼0.04). Conclusion: In this study, we found evidence for a direct causal relationship between GGT and insulin, suggesting that oxidative stress may be causally implicated in the pathogenesis of type 2 diabetes mellitus.
Resumo:
Positive pressure ventilation (PPV) is a frequent intervention in the neonatal intensive care unit. This article is directed towards paediatricians in training and attempts to cover the basics of PPV without being too technical. To do so we have employed an extensive use of graphics to illustrate the underlying principles.
Resumo:
Purpose: In vitro studies in porcine eyes have demonstrated a good correlation between induced intraocular pressure variations and corneal curvature changes, using a contact lens with an embedded microfabricated strain gauge. Continuous 24 hour-intraocular pressure (IOP) monitoring to detect large diurnal fluctuation is currently an unmet clinical need. The aims of this study is to evaluate precision of signal transmission and biocompatibility of 24 hour contact lens sensor wear (SENSIMED Triggerfish®) in humans. Methods: After full eye examination in 10 healthy volunteers, a 8.7 mm radius contact lens sensor and an orbital bandage containing a loop antenna were applied and connected to a portable recorder. Best corrected visual acuity and position, lubrication status and mobility of the sensor were assessed after 5 and 30 minutes, 4, 7 and 24 hours. Subjective comfort was scored and activities documented in a logbook. After sensor removal full eye examination was repeated, and the registration signal studied. Results: The comfort score was high and did not fluctuate significantly, except at the 7 hour-visit. The mobility of the contact lens was minimal but its lubrication remained good. Best corrected visual acuity was significantly reduced during the sensor wear and immediately after its removal. Three patients developed mild corneal staining. In all but one participant we obtained a registration IOP curve with visible ocular pulse amplitude. Conclusions: This 24 hour-trial confirmed the functionality and biocompatibility of SENSIMED Triggerfish® wireless contact lens sensor for IOP-fluctuation monitoring in volunteers. Further studies with a range of different contact lens sensor radii are indicated.
Resumo:
BACKGROUND: MR tissue tagging allows the noninvasive assessment of the locally and temporally resolved motion pattern of the left ventricle. Alterations in cardiac torsion and diastolic relaxation of the left ventricle were studied in patients with aortic stenosis and were compared with those of healthy control subjects and championship rowers with physiological volume-overload hypertrophy. METHODS AND RESULTS: Twelve aortic stenosis patients, 11 healthy control subjects with normal left ventricular function, and 11 world-championship rowers were investigated for systolic and diastolic heart wall motion on a basal and an apical level of the myocardium. Systolic torsion and untwisting during diastole were examined by use of a novel tagging technique (CSPAMM) that provides access to systolic and diastolic motion data. In the healthy heart, the left ventricle performs a systolic wringing motion, with a counterclockwise rotation at the apex and a clockwise rotation at the base. Apical untwisting precedes diastolic filling. In the athlete's heart, torsion and untwisting remain unchanged compared with those of the control subjects. In aortic stenosis patients, torsion is significantly increased and diastolic apical untwisting is prolonged compared with those of control subjects or athletes. CONCLUSIONS: Torsional behavior as observed in pressure- and volume-overloaded hearts is consistent with current theoretical findings. A delayed diastolic untwisting in the pressure-overloaded hearts of the patients may contribute to a tendency toward diastolic dysfunction.
Resumo:
The clinical pharmacology of a synthetic rat atrial natriuretic peptide (rANP) was evaluated in normal volunteers. During a dose-ranging study at 1-40 micrograms/min we observed a dose-dependent decrease in mean intra-arterial blood pressure, an acceleration of the heart rate and a transient increase in blood flow to the skin. During a 4-h constant-dose infusion at 0.5 and 5.0 micrograms/min, inulin clearance remained unchanged but there was a dose-related fall in paraaminohippurate (PAH) clearance and an increase in the filtration fraction. Urinary excretion of sodium, chloride and calcium increased in a dose-related fashion, but with the high dose the excretion curve had a bell-shape. No change in plasma renin activity, angiotensin II and aldosterone was observed during the rANP infusion despite the excretion of large amounts of sodium and a blood pressure reduction with the high dose. Indocyanine green clearance, a measure of hepatic blood flow, was significantly decreased by a 2-h rANP infusion at 1.0 microgram/min. In normal volunteers, therefore, rANP induced vasodilation and blood pressure reduction, a decrease in renal and hepatic blood flow and a natriuretic and transient diuretic effect without activation of the renin-angiotensin-aldosterone system.
Resumo:
Acute normocapnic hypoxemia can cause functional renal insufficiency by increasing renal vascular resistance (RVR), leading to renal hypoperfusion and decreased glomerular filtration rate (GFR). Insulin-like growth factor 1 (IGF-1) activity is low in fetuses and newborns and further decreases during hypoxia. IGF-1 administration to humans and adult animals induces pre- and postglomerular vasodilation, thereby increasing GFR and renal blood flow (RBF). A potential protective effect of IGF-1 on renal function was evaluated in newborn rabbits with hypoxemia-induced renal insufficiency. Renal function and hemodynamic parameters were assessed in 17 anesthetized and mechanically ventilated newborn rabbits. After hypoxemia stabilization, saline solution (time control) or IGF-1 (1 mg/kg) was given as an intravenous (i.v.) bolus, and renal function was determined for six 30-min periods. Normocapnic hypoxemia significantly increased RVR (+16%), leading to decreased GFR (-14%), RBF (-19%) and diuresis (-12%), with an increased filtration fraction (FF). Saline solution resulted in a worsening of parameters affected by hypoxemia. Contrarily, although mean blood pressure decreased slightly but significantly, IGF-1 prevented a further increase in RVR, with subsequent improvement of GFR, RBF and diuresis. FF indicated relative postglomerular vasodilation. Although hypoxemia-induced acute renal failure was not completely prevented, IGF-1 elicited efferent vasodilation, thereby precluding a further decline in renal function.
Resumo:
Intracranial hypertension is an emergency suspected from clinical symptoms, imaging data and ophthalomologic signs. Intracranial hypertension is confirmed by invasive intracranial monitoring, which is the gold standard technique to measure intracranial pressure (ICP). Because of complications, hemorrhage or infection, non-invasive methods have been developed such as neuroimaging, transcranial Doppler sonography and optic nerve sheath diameter (ONSD) ultrasonography. We have reviewed ONSD technique that detects intracranial hypertension related volume variations of subarachnoid space along the retro bulbar segment of the optic nerve. Technique, indications and prospects are discussed.