287 resultados para Epithelial Cells -- immunology
Resumo:
Interleukin (IL)-12p40, a subunit of IL-12p70 and IL-23, has previously been shown to inhibit IL-12p70 activity and interferon-gamma (IFN-gamma) production. However, recent evidence has suggested that the role of IL-12p40 is more complex. To study the contribution of IL-12p40 to immune responses against mycobacterial infections, we have used transgenic (tg) mice overexpressing IL-12p40 under the control of a major histocompatibility complex-II promoter. The IL-12p40 transgene was expressed during steady state at concentrations of 129 +/- 25 ng/ml of serum and 75 +/- 13 ng per spleen, while endogenous IL-12p40 was hardly detectable in control littermates. Bacille Calmette-Guérin (BCG) infection strongly induced the expression of IL-12p40 transgene in infected organs, and IL-12p40 monomeric and dimeric forms were identified in spleen of IL-12p40 tg mice. Excessive production of IL-12p40 resulted in a 14-fold increase in IL-12p70 serum levels in tg mice versus non-transgenic mice. IL-23 was also strongly elevated in the serum and spleens of IL-12p40 tg mice through BCG infection. While IFN-gamma and tumour necrosis factor protein levels were similar in IL-12p40 tg and non-transgenic mice, Th2 type immune responses were reduced in IL-12p40 tg mice. The number of BCG granulomas and macrophage expressing inducible nitric oxide synthase were similar in IL-12p40 tg and non-transgenic mice. IL-12p40 tg mice were as resistant as non-transgenic mice to BCG and Mycobacterium tuberculosis infections as they could efficiently control bacillary growth. These data show that high amounts of IL-12p40 promotes IL-12p70 and IL-23 formation, but that does not affect T helper 1 type immune responses and granuloma function, thus leading to normal mycobacterial clearance in infected organs.
Resumo:
BACKGROUND: Food allergy has reached an epidemic level in westernized countries and although central mechanisms have been described, the variability associated with genetic diversity underscores the still unresolved complexity of these disorders. OBJECTIVE: To develop models of food allergy and oral tolerance, both strictly induced by the intestinal route, and to compare antigen-specific responses. METHODS: BALB/c mice were mucosally sensitized to ovalbumin (OVA) in the presence of the mucosal adjuvant cholera toxin, or tolerized by intra-gastric administrations of OVA alone. Antibody titres and cytokines were determined by ELISA, and allergic status was determined through several physiologic parameters including decline in temperature, diarrhoea, mast cell degranulation and intestinal permeability. RESULTS: OVA-specific antibodies (IgE, IgGs and IgA in serum and feces) were produced in sensitized mice exclusively. Upon intra-gastric challenge with OVA, sensitized mice developed anaphylactic reactions associated with a decline of temperature, diarrhoea, degranulation of mast cells, which were only moderately recruited in the small intestine, and increased intestinal permeability. Cytokines produced by immune cells from sensitized mice included T-helper type 2 cytokines (IL-5, IL-13), but also IL-10, IFN-gamma and IL-17. In contrast, all markers of allergy were totally absent in tolerized animals, and yet the latter were protected from subsequent sensitization, demonstrating that oral tolerance took place efficiently. CONCLUSION: This work allows for the first time an appropriate comparison between sensitized and tolerized BALB/c mice towards OVA. It highlights important differences from other models of allergy, and thus questions some of the generally accepted notions of allergic reactions, such as the protective role of IFN-gamma, the importance of antigen-specific secretory IgA and the role of mucosal mast cells in intestinal anaphylaxis. In addition, it suggests that IL-17 might be an effector cytokine in food allergy. Finally, it demonstrates that intestinal permeability towards the allergen is increased during challenge.
Resumo:
Generating an anti-tumor immune response is a multi-step process that is executed by effector T cells that can recognize and kill tumor targets. However, tumors employ multiple strategies to attenuate the effectiveness of T-cell-mediated attack. They achieve this by interfering with nearly every step required for effective immunity, from deregulation of antigen-presenting cells to establishment of a physical barrier at the vasculature that prevents homing of effector tumor-rejecting cells and the suppression of effector lymphocytes through the recruitment and activation of immunosuppressive cells such as myeloid-derived suppressor cells, tolerogenic monocytes, and T regulatory cells. Here, we review the ways in which tumors exert immune suppression and highlight the new therapies that seek to reverse this phenomenon and promote anti-tumor immunity. Understanding anti-tumor immunity, and how it becomes disabled by tumors, will ultimately lead to improved immune therapies and prolonged survival of patients.
Resumo:
The murine model of infection with Leishmania major has allowed the demonstration of a causal relationship between, on the one hand, genetically determined resistance to infection and the development of a Th1 CD4+ cell response, and on the other hand, genetically determined susceptibility and Th2 cell maturation. Using this murine model of infection, the role of cytokines in directing the functional differentiation pathway of CD4+ T cell precursors, has been demonstrated in vivo. Thus, IL-12 and IFN-gamma have been shown to favour Th1 cell development and IL-4 is crucial for the differentiation of Th2 responses. Maturation of a Th2 response in susceptible BALB/c mice following infection with L. major is triggered by the IL-4 produced during the first two days after parasite inoculation. This IL-4 rapidly renders parasite specific CD4+ T cells precursors unresponsive to IL-12. A restricted population of CD4+ T cells expressing the V beta 4V alpha 8 TCR heterodimer and recognizing a single epitope on the LACK (Leishmania Activated C-Kinase) antigen of L. major is responsible for this rapid production of IL-4, instructing subsequent differentiation towards the Th2 phenotype of CD4+ T cells specific for several parasite antigens.
Resumo:
Patients with Charcot-Marie-Tooth neuropathy and gene targeting in mice revealed an essential role for the SH3TC2 gene in peripheral nerve myelination. SH3TC2 expression is restricted to Schwann cells in the peripheral nervous system, and the gene product, SH3TC2, localizes to the perinuclear recycling compartment. Here, we show that SH3TC2 interacts with the small guanosine triphosphatase Rab11, which is known to regulate the recycling of internalized membranes and receptors back to the cell surface. Results of protein binding studies and transferrin receptor trafficking are in line with a role of SH3TC2 as a Rab11 effector molecule. Consistent with a function of Rab11 in Schwann cell myelination, SH3TC2 mutations that cause neuropathy disrupt the SH3TC2/Rab11 interaction, and forced expression of dominant negative Rab11 strongly impairs myelin formation in vitro. Our data indicate that the SH3TC2/Rab11 interaction is relevant for peripheral nerve pathophysiology and place endosomal recycling on the list of cellular mechanisms involved in Schwann cell myelination.
Resumo:
The annual meeting of the French Ion Channels Society, held on the Mediterranean coast of France, is aimed at gathering the international scientific community working on various aspects of ion channels. In this report of the 19th edition of the meeting, held in September 2008, we summarize selected symposia on aspects of the ion channel field from fundamental to clinical research. The meeting is an opportunity for leading investigators as well as young researchers to present and discuss their recent advances and future challenges in the ion channel field.
Resumo:
Clinical use of antibiotics is based on their capacity to inhibit bacterial growth via bacteriostatic or bacteriocidal effects. In this article, we show that the aminoglycoside antibiotic neomycin, the cyclic lipopeptide antibiotic polymyxin B, and the cyclic peptide antibiotics gramicidin and tyrothricin can induce IL-1β secretion in bone marrow dendritic cells and macrophages. LPS priming was required to trigger the transcription and translation of pro-IL-1β but was independent of TNFR or IL-1R signaling. All four antibiotics required the NLRP3 inflammasome, the adaptor ASC, and caspase-1 activation to secrete IL-1β, a process that depended on potassium efflux but was independent of P2X7 receptor. All four antibiotics induced neutrophil influx into the peritoneal cavity of mice, which required NLRP3 only in the case of polymyxin B. Together, certain antibiotics have the potential to directly activate innate immunity of the host.
Resumo:
There is considerable interest in the development of vaccination strategies that would elicit strong tumor-specific CTL responses in cancer patients. One strategy consists of using recombinant viruses encoding amino acid sequences corresponding to natural CTL-defined peptide from tumor Ags as immunogens. However, studies with synthetic tumor antigenic peptides have demonstrated that introduction of single amino acid substitutions may dramatically increase their immunogenicity. In this study we have used a well-defined human melanoma tumor Ag system to test the possibility of translating the immunological potency of synthetic tumor antigenic peptide analogues into recombinant vaccinia viruses carrying constructs with the appropriate nucleotide substitutions. Our results indicate that the use of a mutated minigene construct directing the expression of a modified melanoma tumor Ag leads to improved Ag recognition and, more importantly, to enhanced immunogenicity. Thus, recombinant vaccinia viruses containing mutated minigene sequences may lead to new strategies for the induction of strong tumor-specific CTL responses in cancer patients.
Resumo:
LJM11, an abundant salivary protein from the sand fly Lutzomyia longipalpis, belongs to the insect "yellow" family of proteins. In this study, we immunized mice with 17 plasmids encoding L. longiplapis salivary proteins and demonstrated that LJM11 confers protective immunity against Leishmania major infection. This protection correlates with a strong induction of a delayed type hypersensitivity (DTH) response following exposure to L. longipalpis saliva. Additionally, splenocytes of exposed mice produce IFN-γ upon stimulation with LJM11, demonstrating the systemic induction of Th1 immunity by this protein. In contrast to LJM11, LJM111, another yellow protein from L. longipalpis saliva, does not produce a DTH response in these mice, suggesting that structural or functional features specific to LJM11 are important for the induction of a robust DTH response. To examine these features, we used calorimetric analysis to probe a possible ligand binding function for the salivary yellow proteins. LJM11, LJM111, and LJM17 all acted as high affinity binders of prohemostatic and proinflammatory biogenic amines, particularly serotonin, catecholamines, and histamine. We also determined the crystal structure of LJM11, revealing a six-bladed β-propeller fold with a single ligand binding pocket located in the central part of the propeller structure on one face of the molecule. A hypothetical model of LJM11 suggests a positive electrostatic potential on the face containing entry to the ligand binding pocket, whereas LJM111 is negative to neutral over its entire surface. This may be the reason for differences in antigenicity between the two proteins.
Resumo:
Aldosterone stimulation of the mineralocorticoid receptor (MR) is involved in numerous physiological responses, including Na+ homeostasis, blood pressure control, and heart failure. Aldosterone binding to MR promotes different post-translational modifications that regulate MR nuclear translocation, gene expression, and finally receptor degradation. Here, we show that aldosterone stimulates rapid phosphorylation of MR via ERK1/2 in a dose-dependent manner (from 0.1 to 10 nM) in renal epithelial cells. This phosphorylation induces an increase of MR apparent molecular weight, with a maximal upward shift of 30 kDa. Strikingly, these modifications are critical for the regulation of the MR ubiquitylation state. Indeed, we find that MR is monoubiquitylated in its basal state, and this status is sustained by the tumor suppressor gene 101 (Tsg101). Phosphorylation leads to disruption of MR/Tsg101 association and monoubiquitin removal. These events prompt polyubiquitin-dependent destabilization of MR and degradation. Preventing MR phosphorylation by ERK1/2 inhibition or mutation of target serines affects the sequential mechanisms of MR ubiquitylation and inhibits the aldosterone-mediated degradation. Our data provide a novel model of negative feedback of aldosterone signaling, involving sequential phosphorylation, monoubiquitin removal and subsequent polyubiquitylation/degradation of MR.
Resumo:
OBJECTIVE: Fibrotic changes are initiated early in acute respiratory distress syndrome. This may involve overproliferation of alveolar type II cells. In an animal model of acute respiratory distress syndrome, we have shown that the administration of an adenoviral vector overexpressing the 70-kd heat shock protein (AdHSP) limited pathophysiological changes. We hypothesized that this improvement may be modulated, in part, by an early AdHSP-induced attenuation of alveolar type II cell proliferation. DESIGN: Laboratory investigation. SETTING: Hadassah-Hebrew University and University of Pennsylvania animal laboratories. SUBJECTS: Sprague-Dawley Rats (250 g). INTERVENTIONS: Lung injury was induced in male Sprague-Dawley rats via cecal ligation and double puncture. At the time of cecal ligation and double puncture, we injected phosphate-buffered saline, AdHSP, or AdGFP (an adenoviral vector expressing the marker green fluorescent protein) into the trachea. Rats then received subcutaneous bromodeoxyuridine. In separate experiments, A549 cells were incubated with medium, AdHSP, or AdGFP. Some cells were also stimulated with tumor necrosis factor-alpha. After 48 hrs, cytosolic and nuclear proteins from rat lungs or cell cultures were isolated. These were subjected to immunoblotting, immunoprecipitation, electrophoretic mobility shift assay, fluorescent immunohistochemistry, and Northern blot analysis. MEASUREMENTS AND MAIN RESULTS: Alveolar type I cells were lost within 48 hrs of inducing acute respiratory distress syndrome. This was accompanied by alveolar type II cell proliferation. Treatment with AdHSP preserved alveolar type I cells and limited alveolar type II cell proliferation. Heat shock protein 70 prevented overexuberant cell division, in part, by inhibiting hyperphosphorylation of the regulatory retinoblastoma protein. This prevented retinoblastoma protein ubiquitination and degradation and, thus, stabilized the interaction of retinoblastoma protein with E2F1, a key cell division transcription factor. CONCLUSIONS: : Heat shock protein 70-induced attenuation of cell proliferation may be a useful strategy for limiting lung injury when treating acute respiratory distress syndrome if consistent in later time points.
Resumo:
Résumé Dans la peau, il a été montré que Notch1 induit l'arrêt de la prolifération et la différentiation des keratinocytes. L'inactivation de Notch1 cause une hyperplasie de l'épiderme et la formation de carcinomes basaux cellulaires. Notre groupe a principalement identifié deux voies de signalisations, la voie Shh et la voie Wnt, qui sont dérégulées en conséquence de l'inactivation de Notch1 dans la peau. Nous avons démontré l'habilité de Notch1 à réprimer la voie Wnt induite par ß-catenin dans les keratinocytes primaires ainsi que dans d'autres types de cellules épithéliales humaines. De plus, nous avons pu déterminer que Notch1 régule cette voie, probablement en favorisant la phosphorylation de ß-catenin par le complexe axin/APC/GSK-3ß. La protéine faisant partie de la voie Wnt, ou la protéine affectant la voie Wnt, qui est régulée par Notch1 est sujette à de plus amples investigations. Un autre but de cette étude a été l'identification de potentiels gènes cibles de Notch1 autres que ceux faisant partie des voies de signalisation Shh et Wnt précédemment évoquées. Ce projet fut abordé par l'analyse de puces à ADN (ISREC et Affymetrix) qui ont été utilisées pour des expériences de gain et de perte de fonction de Notch1 dans des keratinocytes prúmaires. En plus de l'hyperplasie épidermale, les souris Notch1 déficiente ont une perte importante de poils. Nous avons montré que Notch1 est nécessaire pour le développement et l'homéostasie des follicules pileux. En effet, l'inactivation du gène Notch1 mediée par l'activation des kératines 5 ou 14 dans l'épiderme, cause des défauts du cycle ainsi que de la structure des poils. De plus, d'autres appendices de la peau, comme les glandes sudoripares et de Meibomius, ont une structure anormale et sont non fonctionnelles dans les souris Notch1 déficiente. Finalement, nous avons observé que la déficience de Notch1 dans l'épithélium cornéen mène à la formation d'une plaque épidermale opaque sur la cornée. Basé sur l'hypothèse que le défaut des glandes de Meibomius des souris Notch1 déficientes cause des lésions de la surface oculaire, nous avons montré que Notch1 est essentiel pour la cicatrisation de la cornée. Lorsque Notch1 est absent, les cellules souches de l'épithélium cornéen ne sont plus capables de se différentier en cellules cornéennes, mais réparent la blessure en se différentiant en épiderme. Ce résultat indique que Notch1 est essentiel pour la différentiation de cellules souches de la cornée qui sont spécifiquement impliquées dans la réparation de la cornée. De plus, nous avons montré que l'expression de CRBP1 dans l'épithélium cornéen est diminuée en l'absence de Notch1, ceci étant possiblement à l'origine de la formation de la plaque épidermale. Abstract: In the skin, Notch1 has been shown to trigger cell growth arrest and differentiation of keratinocytes. Notch1 inactivation results in epidermal hyperplasia and subsequent formation of basal cell carcinoma-like (BCC-like) tumors. So far our group has identified two main pathways, the Shh and the Wnt pathway, that are deregulated as a consequence of Notch1 inactivation in the skin. We showed the ability of Notch1 to represses ß-catenin-mediated Wnt signaling in primary keratinocytes as well as in other types of human epithelial cells. In addition we were able to determine that Notch1 regulates this pathway possibly by enhancing ß-catenin phosphorylation by the axin/APC/GSK-3ß complex. The exact target protein of the Wnt pathway or target protein that affects the Wnt pathway, and that is regulated by Notch1, is subject of current investigation. Another aim of this study was the identification of possible Notch1 target genes in addition to those of the Shh and Wnt signaling pathways. This was addressed by gene chip analysis using ISREC as well as Affymetrix microarrays for gain and loss of function of Notch1 in mouse primary keratinocytes. In addition to epidermal hyperplasia, Notch1 deficient mice show an important hair loss. We showed that Notch1 is required for postnatal development and homeostasis of hair follicles. Indeed, keratin5 or keratinl4-driven Cre recombinase-mediated inactivation of the Notch1 gene in the epidermis causes perturbations of the hair cycle and structural defects of the hair follicle. Moreover, other skin appendages, like the sweat and Meibomian glands show abnormal morphology and are not functional in the Notch 1 deficient mice. Finally, we observed that Notch1 deficiency in the corneal epithelium leads to the formation of an epidermal corneal plaque. Based on the hypothesis that the Meiboinian gland defect in the Notch1 deficient mice results in lesions of the eye surface, we showed that Notch1 is essential for wound-healing of the cornea. In absence of Notch1 the stem cells of the corneal epithelium are no longer able to differentiate in the corneal fate but instead repair the wound by differentiating into skin-like epidermis. This result indicated that Notch1 is essential for the differentiation of corneal stem cells specifically implicated in corneal wound-healing. Moreover, we showed that CRBP1 expression in the corneal epithelium was lost in the absence of Notch1, possibly being at the origin of plaque formation.
Resumo:
Fifteen human melanoma cells lines were tested by an antibody-binding radioimmunoassay using a monoclonal antibody (A12) directed against the common acute lymphoblastic leukemia antigen (CALLA). Cells from six melanoma lines were found to react with this antibody. The level of antigen and the percentage of positive cells in these six melanoma lines showed wide variation, as demonstrated by analysis in the fluorescence-activated cell sorter (FACS). Immunoprecipitation of solubilized 125I-labeled membrane proteins from CALLA positive melanoma cells with A12 monoclonal antibody revealed a major polypeptide chain with an apparent m.w. of 100,000 daltons, characteristic for CALLA as determined on SDS-polyacrylamide gel electrophoresis. The expression of CALLA on MP-6 melanoma cells was modulated when the cells were cultured in the presence of A12 antibody. Reexpression of CALLA on these cells occurred within 5 days after transfer of the modulated cells into medium devoid of monoclonal antibody.
Resumo:
Murine T cell clones that proliferated specifically in response to the protein antigen apo cytochrome c were derived and maintained in continuous culture. Two distinct clonotypes were observed with respect to the proliferative responses observed when a variety of peptides prepared from several species of cytochrome c were tested. These 2 clonotypes appeared to recognize 2 different regions in the cytochrome c molecule. Only 1 of the 2 clonotypes tested demonstrated helper cell activity for antibody formation in vitro.