270 resultados para Oscillatory regulatory networks
Resumo:
Coordination games are important to explain efficient and desirable social behavior. Here we study these games by extensive numerical simulation on networked social structures using an evolutionary approach. We show that local network effects may promote selection of efficient equilibria in both pure and general coordination games and may explain social polarization. These results are put into perspective with respect to known theoretical results. The main insight we obtain is that clustering, and especially community structure in social networks has a positive role in promoting socially efficient outcomes.
Resumo:
Both, Bayesian networks and probabilistic evaluation are gaining more and more widespread use within many professional branches, including forensic science. Notwithstanding, they constitute subtle topics with definitional details that require careful study. While many sophisticated developments of probabilistic approaches to evaluation of forensic findings may readily be found in published literature, there remains a gap with respect to writings that focus on foundational aspects and on how these may be acquired by interested scientists new to these topics. This paper takes this as a starting point to report on the learning about Bayesian networks for likelihood ratio based, probabilistic inference procedures in a class of master students in forensic science. The presentation uses an example that relies on a casework scenario drawn from published literature, involving a questioned signature. A complicating aspect of that case study - proposed to students in a teaching scenario - is due to the need of considering multiple competing propositions, which is an outset that may not readily be approached within a likelihood ratio based framework without drawing attention to some additional technical details. Using generic Bayesian networks fragments from existing literature on the topic, course participants were able to track the probabilistic underpinnings of the proposed scenario correctly both in terms of likelihood ratios and of posterior probabilities. In addition, further study of the example by students allowed them to derive an alternative Bayesian network structure with a computational output that is equivalent to existing probabilistic solutions. This practical experience underlines the potential of Bayesian networks to support and clarify foundational principles of probabilistic procedures for forensic evaluation.
Resumo:
Schizophrenia is often considered as a dysconnection syndrome in which, abnormal interactions between large-scale functional brain networks result in cognitive and perceptual deficits. In this article we apply the graph theoretic measures to brain functional networks based on the resting EEGs of fourteen schizophrenic patients in comparison with those of fourteen matched control subjects. The networks were extracted from common-average-referenced EEG time-series through partial and unpartial cross-correlation methods. Unpartial correlation detects functional connectivity based on direct and/or indirect links, while partial correlation allows one to ignore indirect links. We quantified the network properties with the graph metrics, including mall-worldness, vulnerability, modularity, assortativity, and synchronizability. The schizophrenic patients showed method-specific and frequency-specific changes especially pronounced for modularity, assortativity, and synchronizability measures. However, the differences between schizophrenia patients and normal controls in terms of graph theory metrics were stronger for the unpartial correlation method.
Resumo:
DNA double strand breaks (DSBs) are mainly repaired via homologous recombination (HR) or nonhomologous end joining (NHEJ). These breaks pose severe threats to genome integrity but can also be necessary intermediates of normal cellular processes such as immunoglobulin class switch recombination (CSR). During CSR, DSBs are produced in the G1 phase of the cell cycle and are repaired by the classical NHEJ machinery. By studying B lymphocytes derived from patients with Cornelia de Lange Syndrome, we observed a strong correlation between heterozygous loss-of-function mutations in the gene encoding the cohesin loading protein NIPBL and a shift toward the use of an alternative, microhomology-based end joining during CSR. Furthermore, the early recruitment of 53BP1 to DSBs was reduced in the NIPBL-deficient patient cells. Association of NIPBL deficiency and impaired NHEJ was also observed in a plasmid-based end-joining assay and a yeast model system. Our results suggest that NIPBL plays an important and evolutionarily conserved role in NHEJ, in addition to its canonical function in sister chromatid cohesion and its recently suggested function in HR.
Resumo:
Pluripotency in human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) is regulated by three transcription factors-OCT3/4, SOX2, and NANOG. To fully exploit the therapeutic potential of these cells it is essential to have a good mechanistic understanding of the maintenance of self-renewal and pluripotency. In this study, we demonstrate a powerful systems biology approach in which we first expand literature-based network encompassing the core regulators of pluripotency by assessing the behavior of genes targeted by perturbation experiments. We focused our attention on highly regulated genes encoding cell surface and secreted proteins as these can be more easily manipulated by the use of inhibitors or recombinant proteins. Qualitative modeling based on combining boolean networks and in silico perturbation experiments were employed to identify novel pluripotency-regulating genes. We validated Interleukin-11 (IL-11) and demonstrate that this cytokine is a novel pluripotency-associated factor capable of supporting self-renewal in the absence of exogenously added bFGF in culture. To date, the various protocols for hESCs maintenance require supplementation with bFGF to activate the Activin/Nodal branch of the TGFβ signaling pathway. Additional evidence supporting our findings is that IL-11 belongs to the same protein family as LIF, which is known to be necessary for maintaining pluripotency in mouse but not in human ESCs. These cytokines operate through the same gp130 receptor which interacts with Janus kinases. Our finding might explain why mESCs are in a more naïve cell state compared to hESCs and how to convert primed hESCs back to the naïve state. Taken together, our integrative modeling approach has identified novel genes as putative candidates to be incorporated into the expansion of the current gene regulatory network responsible for inducing and maintaining pluripotency.
Resumo:
Regulatory T cells control immune responses to self- and foreign-antigens and play a major role in maintaining the balance between immunity and tolerance. This article reviews recent key developments in the field of CD4+CD25+Foxp3+ regulatory T (TREG) cells. It presents their characteristics and describes their range of activity and mechanisms of action. Some models of diseases triggered by the imbalance between TREG cells and effector pathogenic T cells are described and their potential therapeutic applications in humans are outlined.
Resumo:
Regulatory T cells (Tregs) play a key role in immune system homeostasis and tolerance to antigens, thereby preventing autoimmunity, and may be partly responsible for the lack of an appropriate immune response against tumor cells. Although not sufficient, a high expression of forkhead box P3 (FOXP3) is necessary for their suppressive function. Recent reports have shown that histones deacetylase inhibitors increased FOXP3 expression in T cells. We therefore decided to investigate in non-Tregs CD4-positive cells, the mechanisms by which an aspecific opening of the chromatin could lead to an increased FOXP3 expression. We focused on binding of potentially activating transcription factors to the promoter region of FOXP3 and on modifications in the five miRs constituting the Tregs signature. Valproate treatment induced binding of Ets-1 and Ets-2 to the FOXP3 promoter and acted positively on its expression, by increasing the acetylation of histone H4 lysines. Valproate treatment also induced the acquisition of the miRs Tregs signature. To elucidate whether the changes in the miRs expression could be due to the increased FOXP3 expression, we transduced these non-Tregs with a FOXP3 lentiviral expression vector, and found no changes in miRs expression. Therefore, the modification in their miRs expression profile is not due to an increased expression of FOXP3 but directly results from histones deacetylase inhibition. Rather, the increased FOXP3 expression results from the additive effects of Ets factors binding and the change in expression level of miR-21 and miR-31. We conclude that valproate treatment of human non-Tregs confers on them a molecular profile similar to that of their regulatory counterpart.
Resumo:
Objectives: Streptozotocin (STZ) induced diabetes is currently the most commonly used animalmodel for islet transplantation.However, STZtreatment and the ensuing hyperglycemia were both shown to affect the immune response, including an apparent induction of lymphopenia. The aim of this study was to evaluate the respective effect of STZ and hyperglycemia on the immune system in STZ induced diabetic C57BL/6 mice. Methods: Phenotypes and levels of T and B cells were analyzed by flow cytometry in blood and spleen over time. The effect of hyperglycemia was further characterized by insulin replacement, islet transplantation and by using Rip (rat insulin promoter) DTR (dipheteria tocin receptor) transgenic mice. Results: STZ but not hyperglycemia was toxic for splenocytes in vitro, whereas hyperglycemia correlated with diabetes associated blood and spleen lymphopenia in vivo. Moreover, independently of hyperglycemia, STZ lead to a relative increase of T regulatory cells which retained their suppressive capacity in vitro. Conclusion: These data suggest thatSTZand the ensuing acute hyperglycemia have major direct and indirect effects on immune homeostasis. Thus, high caution needs to be exercised in the interpretation of the results of tolerance induction and/or immunosuppressive protocols in STZ-induced diabetes and islet transplantation models.
Resumo:
Jasmonates control defense gene expression and male fertility in the model plant Arabidopsis thaliana. In both cases, the involvement of the jasmonate pathway is complex, involving large-scale transcriptional reprogramming. Additionally, jasmonate signaling is hard-wired into the auxin, ethylene, and salicylate signal networks, all of which are under intense investigation in Arabidopsis. In male fertility, jasmonic acid (JA) is the essential signal intervening both at the level of anther elongation and in pollen dehiscense. A number of genes potentially involved in jasmonate-dependent anther elongation have recently been discovered. In the case of defense, at least two jasmonates, JA and its precursor 12-oxo-phytodienoic acid (OPDA), are necessary for the fine-tuning of defense gene expression in response to various microbial pathogens and arthropod herbivores. However, only OPDA is required for full resistance to some insects and fungi. Other jasmonates probably affect yet more physiological responses. A series of breakthroughs have identified the SKP/CULLIN/F-BOX (SCF), CORONATINE INSENSITIVE (COI1) complex, acting together with the CONSTITUTIVE PHOTOMORPHOGENIC 9 (COP9) signalosome, as central regulatory components of jasmonate signaling in Arabidopsis. The studies, mostly involving mutational approaches, have paved the way for suppressor screens that are expected to further extend our knowledge of jasmonate signaling. When these and other new mutants affecting jasmonate signaling are characterized, new nodes will be added to the Arabidopsis Jasmonate Signaling Pathway Connections Map, and the lists of target genes regulated by jasmonates in Arabidopsis will be expanded.
Resumo:
Purpose: Current experimental data suggest that CD4+CD25+Foxp3+regulatory T cells (Tregs) based immunotherapy would be of greatinterest to promote donor-specific immune tolerance in transplantation(Tx). Whether and how adoptive transfer of Tregs could be bestcombined with current immunosuppressive regimens in clinicalsettings remains to be defined. Using an experimental Tx model,we had previously shown that the transfer of antigen-specific Tregspromoted long-term skin allograft acceptance in lymphopenic mice,in the absence of any immunosuppressive drug. However, allograftsurvival was only slightly prolonged when Tregs were transferredalone into non-lymphopenic mice, suggesting that in more stringentconditions such as in clinical settings adjuvant therapies may beneeded to effectively control alloreactive T cells (Teff).Methods and Materials: Here we have investigated the effects ofvarious immunosuppressive drugs on the survival, proliferation andeffector function of Teff and Tregs in response to alloantigens in in vitroassays and in our in vivo Tx model.Results: Teff proliferation was inhibited in a dose-dependant mannerby rapamycin and cyclosporine A, while anti-CD154 only marginallyaffected Teff proliferation and survival in vitro. Rapamycin promotedapoptosis of Teff as compared to Tregs that were more resistant underthe same culture conditions. In vivo, the transfer of donor-specificTregs could be advantageously combined with rapamycin andanti-CD154 to significantly prolong MHC-mismatched skin allograftsurvival in non-lymphopenic recipients.Conclusion: Taken together, our data indicate thatimmunosuppressive drugs differentially target T-cell subsets and couldpromote Tregs expansion and/or function while controlling the Teff pool.
Resumo:
Résumé Ce travail de thèse étudie des moyens de formalisation permettant d'assister l'expert forensique dans la gestion des facteurs influençant l'évaluation des indices scientifiques, tout en respectant des procédures d'inférence établies et acceptables. Selon une vue préconisée par une partie majoritaire de la littérature forensique et juridique - adoptée ici sans réserve comme point de départ - la conceptualisation d'une procédure évaluative est dite 'cohérente' lors qu'elle repose sur une implémentation systématique de la théorie des probabilités. Souvent, par contre, la mise en oeuvre du raisonnement probabiliste ne découle pas de manière automatique et peut se heurter à des problèmes de complexité, dus, par exemple, à des connaissances limitées du domaine en question ou encore au nombre important de facteurs pouvant entrer en ligne de compte. En vue de gérer ce genre de complications, le présent travail propose d'investiguer une formalisation de la théorie des probabilités au moyen d'un environment graphique, connu sous le nom de Réseaux bayesiens (Bayesian networks). L'hypothèse principale que cette recherche envisage d'examiner considère que les Réseaux bayesiens, en concert avec certains concepts accessoires (tels que des analyses qualitatives et de sensitivité), constituent une ressource clé dont dispose l'expert forensique pour approcher des problèmes d'inférence de manière cohérente, tant sur un plan conceptuel que pratique. De cette hypothèse de travail, des problèmes individuels ont été extraits, articulés et abordés dans une série de recherches distinctes, mais interconnectées, et dont les résultats - publiés dans des revues à comité de lecture - sont présentés sous forme d'annexes. D'un point de vue général, ce travail apporte trois catégories de résultats. Un premier groupe de résultats met en évidence, sur la base de nombreux exemples touchant à des domaines forensiques divers, l'adéquation en termes de compatibilité et complémentarité entre des modèles de Réseaux bayesiens et des procédures d'évaluation probabilistes existantes. Sur la base de ces indications, les deux autres catégories de résultats montrent, respectivement, que les Réseaux bayesiens permettent également d'aborder des domaines auparavant largement inexplorés d'un point de vue probabiliste et que la disponibilité de données numériques dites 'dures' n'est pas une condition indispensable pour permettre l'implémentation des approches proposées dans ce travail. Le présent ouvrage discute ces résultats par rapport à la littérature actuelle et conclut en proposant les Réseaux bayesiens comme moyen d'explorer des nouvelles voies de recherche, telles que l'étude de diverses formes de combinaison d'indices ainsi que l'analyse de la prise de décision. Pour ce dernier aspect, l'évaluation des probabilités constitue, dans la façon dont elle est préconisée dans ce travail, une étape préliminaire fondamentale de même qu'un moyen opérationnel.
Resumo:
Well developed experimental procedures currently exist for retrieving and analyzing particle evidence from hands of individuals suspected of being associated with the discharge of a firearm. Although analytical approaches (e.g. automated Scanning Electron Microscopy with Energy Dispersive X-ray (SEM-EDS) microanalysis) allow the determination of the presence of elements typically found in gunshot residue (GSR) particles, such analyses provide no information about a given particle's actual source. Possible origins for which scientists may need to account for are a primary exposure to the discharge of a firearm or a secondary transfer due to a contaminated environment. In order to approach such sources of uncertainty in the context of evidential assessment, this paper studies the construction and practical implementation of graphical probability models (i.e. Bayesian networks). These can assist forensic scientists in making the issue tractable within a probabilistic perspective. The proposed models focus on likelihood ratio calculations at various levels of detail as well as case pre-assessment.
Resumo:
A central question in developmental biology is how multicellular organisms coordinate cell division and differentiation to determine organ size. In Arabidopsis roots, this balance is controlled by cytokinin-induced expression of SHORT HYPOCOTYL 2 (SHY2) in the so-called transition zone of the meristem, where SHY2 negatively regulates auxin response factors (ARFs) by protein-protein interaction. The resulting down-regulation of PIN-FORMED (PIN) auxin efflux carriers is considered the key event in promoting differentiation of meristematic cells. Here we show that this regulation involves additional, intermediary factors and is spatio-temporally constrained. We found that the described cytokinin-auxin crosstalk antagonizes BREVIS RADIX (BRX) activity in the developing protophloem. BRX is an auxin-responsive target of the prototypical ARF MONOPTEROS (MP), a key promoter of vascular development, and transiently enhances PIN3 expression to promote meristem growth in young roots. At later stages, cytokinin induction of SHY2 in the vascular transition zone restricts BRX expression to down-regulate PIN3 and thus limit meristem growth. Interestingly, proper SHY2 expression requires BRX, which could reflect feedback on the auxin responsiveness of SHY2 because BRX protein can directly interact with MP, likely acting as a cofactor. Thus, cross-regulatory antagonism between BRX and SHY2 could determine ARF activity in the protophloem. Our data suggest a model in which the regulatory interactions favor BRX expression in the early proximal meristem and SHY2 prevails because of supplementary cytokinin induction in the later distal meristem. The complex equilibrium of this regulatory module might represent a universal switch in the transition toward differentiation in various developmental contexts.