337 resultados para MULTIPLE MATERNAL ORIGINS
Resumo:
Learning is the ability of an organism to adapt to the changes of its environment in response to its past experience. It is a widespread ability in the animal kingdom, but its evolutionary aspects are poorly known. Learning ability is supposedly advantageous under some conditions, when environmental conditions are not too stable - because in this case there is no need to learn to predict any event in the environment - and not changing too fast - otherwise environmental cues cannot be used because they are not reliable. Nevertheless, learning ability is also known to be costly in terms of energy needed for neuronal synthesis, memory formation, initial mistakes. During my PhD, I focused on the study of genetic variability of learning ability in natural populations. Genetic variability is the basis on which natural selection and genetic drift can act. How does learning ability vary in nature? What are the roles of additive genetic variation or maternal effects in this variation? Is it involved in evolutionary trade-offs with other fitness-related traits?¦I investigated a natural population of fruit fly, Drosophila melanogaster, as a model organism. Its learning ability is easy to measure with associative memory tests. I used two research tools: multiple inbred and isofemale lines derived from a natural population as a representative sample. My work was divided into three parts.¦First, I investigated the effects of inbreeding on aversive learning (avoidance of an odor previously associated with mechanical shock). While the inbred lines consistently showed reduced egg-to-adult viability by 28 %, the effects of inbreeding on learning performance was 18 % and varied among assays, with a trend to be most pronounced for intermediate conditioning intensity. Variation among inbred lines indicates that ample genetic variance for learning was segregating in the base population, and suggests that the inbreeding depression observed in learning performance was mostly due to dominance rather than overdominance. Across the inbred lines, learning performance was positively correlated with the egg-to-adult viability. This positive genetic correlation contradicts previous studies which observed a trade-off between learning ability and lifespan or larval competitive ability. It suggests that much of the genetic variation for learning is due to pleiotropic effects of genes affecting other functions related to survival. Together with the overall mild effects of inbreeding on learning performance, this suggests that genetic variation specifically affecting learning is either very low, or is due to alleles with mostly additive (semi-dominant) effects. It also suggests that alleles reducing learning performance are on average partially recessive, because their effect does not appear in the outbred base population. Moreover, overdominance seems unlikely as major cause of the inbreeding depression, because even if the overall mean of the inbred line is smaller than the outbred base population, some of the inbred lines show the same learning score as the outbred base population. If overdominance played an important part in inbreeding depression, then all the homozygous lines should show lower learning ability than¦outbred base population.¦In the second part of my project, I sampled the same natural population again and derived isofemale lines (F=0.25) which are less adapted to laboratory conditions and therefore are more representative of the variance of the natural population. They also showed some genetic variability for learning, and for three other fitness-related traits possibly related with learning: resistance to bacterial infection, egg-to-adult viability and developmental time. Nevertheless, the genetic variance of learning ability did not appear to be smaller than the variance of the other traits. The positive correlation previously observed between learning ability and egg- to-adult viability did not appear in isofemale lines (nor a negative correlation). It suggests that there was still genetic variability within isofemale lines and that they did not fix the highly deleterious pleiotropic alleles possibly responsible for the previous correlation.¦In order to investigate the relative amount of nuclear (additive and non-additive effects) and extra-nuclear (maternal and paternal effect) components of variance in learning ability and other fitness-related traits among the inbred lines tested in part one, I performed a diallel cross between them. The nuclear additive genetic variance was higher than other components for learning ability and survival to learning ability, but in contrast, maternal effects were more variable than other effects for developmental traits. This suggests that maternal effects, which reflects effects from mitochondrial DNA, epigenetic effects, or the amount of nutrients that are invested by the mother in the egg, are more important in the early stage of life, and less at the adult stage. There was no additive genetic correlation between learning ability and other traits, indicating that the correlation between learning ability and egg-to-adult viability observed in the first pat of my project was mostly due to recessive genes.¦Finally, my results showed that learning ability is genetically variable. The diallel experiment showed additive genetic variance was the most important component of the total variance. Moreover, every inbred or isofemale line showed some learning ability. This suggested that alleles impairing learning ability are eliminated by selection, and therefore that learning ability is under strong selection in natural populations of Drosophila. My results cannot alone explain the maintenance of the observed genetic variation. Even if I cannot eliminate the hypothesis of pleiotropy between learning ability and the other fitness-related traits I measured, there is no evidence for any trade-off between these traits and learning ability. This contradicts what has been observed between learning ability and other traits like lifespan and larval competitivity.¦L'apprentissage représente la capacité d'un organisme à s'adapter aux changement de son environnement au cours de sa vie, en réponse à son expérience passée. C'est une capacité très répandue dans le règne animal, y compris pour les animaux les plus petits et les plus simples, mais les aspects évolutifs de l'apprentissage sont encore mal connus. L'apprentissage est supposé avantageux dans certaines conditions, quand l'environnement n'est ni trop stable - dans ce cas, il n'y a rien à apprendre - ni trop variable - dans ce cas, les indices sur lesquels se reposer changent trop vite pour apprendre. D'un autre côté, l'apprentissage a aussi des coûts, en terme de synthèse neuronale, pour la formation de la mémoire, ou de coûts d'erreur initiale d'apprentissage. Pendant ma thèse, j'ai étudié la variabilité génétique naturelle des capacités d'apprentissage. Comment varient les capacités d'apprentissage dans la nature ? Quelle est la part de variation additive, l'impact des effets maternel ? Est-ce que l'apprentissage est impliqué dans des interactions, de type compromis évolutifs, avec d'autres traits liés à la fitness ?¦Afin de répondre à ces questions, je me suis intéressée à la mouche du vinaigre, ou drosophile, un organisme modèle. Ses capacités d'apprentissage sont facile à étudier avec un test de mémoire reposant sur l'association entre un choc mécanique et une odeur. Pour étudier ses capacités naturelles, j'ai dérivé de types de lignées d'une population naturelle: des lignées consanguines et des lignées isofemelles.¦Dans une première partie, je me suis intéressée aux effets de la consanguinité sur les capacités d'apprentissage, qui sont peu connues. Alors que les lignées consanguines ont montré une réduction de 28% de leur viabilité (proportion d'adultes émergeants d'un nombre d'oeufs donnés), leurs capacités d'apprentissage n'ont été réduites que de 18%, la plus forte diminution étant obtenue pour un conditionnement modéré. En outre, j'ai également observé que les capacités d'apprentissage était positivement corrélée à la viabilité entre les lignées. Cette corrélation est surprenante car elle est en contradiction avec les résultats obtenus par d'autres études, qui montrent l'existence de compromis évolutifs entre les capacités d'apprentissage et d'autres traits comme le vieillissement ou la compétitivité larvaire. Elle suggère que la variation génétique des capacités d'apprentissage est due aux effets pleiotropes de gènes récessifs affectant d'autres fonctions liées à la survie. Ces résultats indiquent que la variation pour les capacités d'apprentissage est réduite comparée à celle d'autres traits ou est due à des allèles principalement récessifs. L'hypothèse de superdominance semble peu vraisemblable, car certaines des lignées consanguines ont obtenu des scores d'apprentissage égaux à ceux de la population non consanguine, alors qu'en cas de superdominance, elles auraient toutes dû obtenir des scores inférieurs.¦Dans la deuxième partie de mon projet, j'ai mesuré les capacités d'apprentissage de lignées isofemelles issues de la même population initiale que les lignées consanguines. Ces lignées sont issues chacune d'un seul couple, ce qui leur donne un taux d'hétérozygosité supérieur et évite l'élimination de lignées par fixation d'allèles délétères rares. Elles sont ainsi plus représentatives de la variabilité naturelle. Leur variabilité génétique est significative pour les capacités d'apprentissage, et trois traits liés à la fois à la fitness et à l'apprentissage: la viabilité, la résistance à l'infection bactérienne et la vitesse de développement. Cependant, la variabilité des capacités d'apprentissage n'apparaît cette fois pas inférieure à celle des autres traits et aucune corrélation n'est constatée entre les capacité d'apprentissage et les autres traits. Ceci suggère que la corrélation observée auparavant était surtout due à la fixation d'allèles récessifs délétères également responsables de la dépression de consanguinité.¦Durant la troisième partie de mon projet, je me suis penchée sur la décomposition de la variance observée entre les lignées consanguines observée en partie 1. Quatre composants ont été examinés: la variance due à des effets nucléaires (additifs et non additifs), et due à des effets parentaux (maternels et paternels). J'ai réalisé un croisement diallèle de toutes les lignées. La variance additive nucléaire s'est révélée supérieure aux autres composants pour les capacités d'apprentissage et la résistance à l'infection bactérienne. Par contre, les effets maternels étaient plus importants que les autres composants pour les traits développementaux (viabilité et vitesse de développement). Ceci suggère que les effets maternels, dus à G ADN mitochondrial, à l'épistasie ou à la quantité de nutriments investis dans l'oeuf par la mère, sont plus importants dans les premiers stades de développement et que leur effet s'estompe à l'âge adulte. Il n'y a en revanche pas de corrélation statistiquement significative entre les effets additifs des capacités d'apprentissage et des autres traits, ce qui indique encore une fois que la corrélation observée entre les capacités d'apprentissage et la viabilité dans la première partie du projet était due à des effets d'allèles partiellement récessifs.¦Au, final, mes résultats montrent bien l'existence d'une variabilité génétique pour les capacités d'apprentissage, et l'expérience du diallèle montre que la variance additive de cette capacité est importante, ce qui permet une réponse à la sélection naturelle. Toutes les lignées, consanguines ou isofemelles, ont obtenu des scores d'apprentissage supérieurs à zéro. Ceci suggère que les allèles supprimant les capacités d'apprentissage sont fortement contre-sélectionnés dans la nature Néanmoins, mes résultats ne peuvent pas expliquer le maintien de cette variabilité génétique par eux-même. Même si l'hypothèse de pléiotropie entre les capacités d'apprentissage et l'un des traits liés à la fitness que j'ai mesuré ne peut être éliminée, il n'y a aucune preuve d'un compromis évolutif pouvant contribuer au maintien de la variabilité.
Resumo:
Animal societies vary in the number of breeders per group, which affects many socially and ecologically relevant traits. In several social insect species, including our study species Formica selysi, the presence of either one or multiple reproducing females per colony is generally associated with differences in a suite of traits such as the body size of individuals. However, the proximate mechanisms and ontogenetic processes generating such differences between social structures are poorly known. Here, we cross-fostered eggs originating from single-queen (= monogynous) or multiple-queen (= polygynous) colonies into experimental groups of workers from each social structure to investigate whether differences in offspring survival, development time and body size are shaped by the genotype and/or prefoster maternal effects present in the eggs, or by the social origin of the rearing workers. Eggs produced by polygynous queens were more likely to survive to adulthood than eggs from monogynous queens, regardless of the social origin of the rearing workers. However, brood from monogynous queens grew faster than brood from polygynous queens. The social origin of the rearing workers influenced the probability of brood survival, with workers from monogynous colonies rearing more brood to adulthood than workers from polygynous colonies. The social origin of eggs or rearing workers had no significant effect on the head size of the resulting workers in our standardized laboratory conditions. Overall, the social backgrounds of the parents and of the rearing workers appear to shape distinct survival and developmental traits of ant brood.
Resumo:
The paper presents the Multiple Kernel Learning (MKL) approach as a modelling and data exploratory tool and applies it to the problem of wind speed mapping. Support Vector Regression (SVR) is used to predict spatial variations of the mean wind speed from terrain features (slopes, terrain curvature, directional derivatives) generated at different spatial scales. Multiple Kernel Learning is applied to learn kernels for individual features and thematic feature subsets, both in the context of feature selection and optimal parameters determination. An empirical study on real-life data confirms the usefulness of MKL as a tool that enhances the interpretability of data-driven models.
Resumo:
The COP9 signalosome (CSN) is an evolutionarily conserved macromolecular complex that interacts with cullin-RING E3 ligases (CRLs) and regulates their activity by hydrolyzing cullin-Nedd8 conjugates. The CSN sequesters inactive CRL4(Ddb2), which rapidly dissociates from the CSN upon DNA damage. Here we systematically define the protein interaction network of the mammalian CSN through mass spectrometric interrogation of the CSN subunits Csn1, Csn3, Csn4, Csn5, Csn6 and Csn7a. Notably, we identified a subset of CRL complexes that stably interact with the CSN and thus might similarly be activated by dissociation from the CSN in response to specific cues. In addition, we detected several new proteins in the CRL-CSN interactome, including Dda1, which we characterized as a chromatin-associated core subunit of multiple CRL4 proteins. Cells depleted of Dda1 spontaneously accumulated double-stranded DNA breaks in a similar way to Cul4A-, Cul4B- or Wdr23-depleted cells, indicating that Dda1 interacts physically and functionally with CRL4 complexes. This analysis identifies new components of the CRL family of E3 ligases and elaborates new connections between the CRL and CSN complexes.
Resumo:
• Grasses rank among the world's most ecologically and economically important plants. Repeated evolution of the C(4) syndrome has made photosynthesis highly efficient in many grasses, inspiring intensive efforts to engineer the pathway into C(3) crops. However, comparative biology has been of limited use to this endeavor because of uncertainty in the number and phylogenetic placement of C(4) origins. • We built the most comprehensive and robust molecular phylogeny for grasses to date, expanding sampling efforts of a previous working group from 62 to 531 taxa, emphasizing the C(4)-rich PACMAD (Panicoideae, Arundinoideae, Chloridoideae, Micrairoideae, Aristidoideae and Danthonioideae) clade. Our final matrix comprises c. 5700 bp and is > 93% complete. • For the first time, we present strong support for relationships among all the major grass lineages. Several new C(4) lineages are identified, and previously inferred origins confirmed. C(3)/C(4) evolutionary transitions have been highly asymmetrical, with 22-24 inferred origins of the C(4) pathway and only one potential reversal. • Our backbone tree clarifies major outstanding systematic questions and highlights C(3) and C(4) sister taxa for comparative studies. Two lineages have emerged as hotbeds of C(4) evolution. Future work in these lineages will be instrumental in understanding the evolution of this complex trait.
Resumo:
Early detection of neural-tude defects is possible by determining Alpha-fetoprotein (AFP) in maternal serum. 16'685 pregnant women were observed. Three methods for the determination of the "normal" range are compared. The first one, already used in similar studies, makes use of a constant multiple of the median. The other two ones make use of robust estimates of location and scale. Their comparison shows the interest of the robust methods to reduce the interlaboratory variability.
Resumo:
We assessed decision-making capacity and emotional reactivity in 20 patients with multiple sclerosis (MS) and in 16 healthy subjects using the Gambling Task (GT), a model of real-life decision making, and the skin conductance response (SCR). Demographic, neurological, affective, and cognitive parameters were analyzed in MS patients for their effect on decision-making performance. MS patients persisted longer (slope, -3.6%) than the comparison group (slope, -6.4%) in making disadvantageous choices as the GT progressed (p < 0.001), suggesting significant slower learning in MS. Patients with higher Expanded Disability Status Scale scores (EDSS >2.0) showed a different pattern of impairment in the learning process compared with patients with lower functional impairment (EDSS </=2.0). This slower learning was associated with impaired emotional reactivity (anticipatory SCR 3.9 vs 6.1 microSiemens [microS] for patients vs the comparison group, p < 0.0001; post-choice SCR 3.9 vs 6.2 microS, p < 0.0001), but not with executive dysfunction. Impaired emotional dimensions of behavior (assessed using the Dysexecutive Questionnaire, p < 0.002) also correlated with slower learning. Given the considerable consequences that impaired decision making can have on daily life, we suggest that this factor may contribute to handicap and altered quality of life secondary to MS and is dependent on emotional experience. Ann Neurol 2004.
Resumo:
The mechanism by which the immune system produces effector and memory T cells is largely unclear. To allow a large-scale assessment of the development of single naive T cells into different subsets, we have developed a technology that introduces unique genetic tags (barcodes) into naive T cells. By comparing the barcodes present in antigen-specific effector and memory T cell populations in systemic and local infection models, at different anatomical sites, and for TCR-pMHC interactions of different avidities, we demonstrate that under all conditions tested, individual naive T cells yield both effector and memory CD8+ T cell progeny. This indicates that effector and memory fate decisions are not determined by the nature of the priming antigen-presenting cell or the time of T cell priming. Instead, for both low and high avidity T cells, individual naive T cells have multiple fates and can differentiate into effector and memory T cell subsets.
Resumo:
Background:Intrauterine growth restriction (IUGR) is a major risk factor for both perinatal and long-term morbidity. Bovine lactoferrin (bLf) is a major milk glycoprotein considered as a pleiotropic functional nutrient. The impact of maternal supplementation with bLf on IUGR-induced sequelae, including inadequate growth and altered cerebral development, remains unknown.Methods:IUGR was induced through maternal dexamethasone infusion (100 μg/kg during last gestational week) in rats. Maternal supplementation with bLf (0.85% in food pellet) was provided during both gestation and lactation. Pup growth was monitored, and Pup brain metabolism and gene expression were studied using in vivo (1)H NMR spectroscopy, quantitative PCR, and microarray in the hippocampus at postnatal day (PND)7.Results:Maternal bLf supplementation did not change gestational weight but increased the birth body weight of control pups (4%) with no effect on the IUGR pups. Maternal bLf supplementation allowed IUGR pups to recover a normalized weight at PND21 (weaning) improving catch-up growth. Significantly altered levels of brain metabolites (γ-aminobutyric acid, glutamate, N-acetylaspartate, and N-acetylaspartylglutamate) and transcripts (brain-derived neurotrophic factor (BDNF), divalent metal transporter 1 (DMT-1), and glutamate receptors) in IUGR pups were normalized with maternal bLf supplementation.Conclusion:Our data suggest that maternal bLf supplementation is a beneficial nutritional intervention able to revert some of the IUGR-induced sequelae, including brain hippocampal changes.
Resumo:
In social animals, body size can be shaped by multiple factors, such as direct genetic effects, maternal effects, or the social environment. In ants, the body size of queens correlates with the social structure of the colony: colonies headed by a single queen (monogyne) generally produce larger queens that are able to found colonies independently, whereas colonies headed by multiple queens (polygyne) tend to produce smaller queens that stay in their natal colony or disperse with workers. We performed a cross-fostering experiment to investigate the proximate causes of queen size variation in the socially polymorphic ant Formica selysi. As expected if genetic or maternal effects influence queen size, eggs originating from monogyne colonies developed into larger queens than eggs collected from polygyne colonies, be they raised by monogyne or polygyne workers. In contrast, eggs sampled in monogyne colonies were smaller than eggs sampled in polygyne colonies. Hence, eggs from monogyne colonies are smaller but develop into larger queens than eggs from polygyne colonies, independently of the social structure of the workers caring for the brood. These results demonstrate that a genetic polymorphism or maternal effect transmitted to the eggs influences queen size, which probably affects the social structure of new colonies.
Resumo:
BACKGROUND: Modafinil has anecdotal response to neurological fatigue, but such an effect may depend on the type and location of cerebral impairment. OBJECTIVES: It was the aim of this study to compare fatigue observed in different neurological pathologies, to evaluate the tolerability to modafinil, and to describe changes in subjective fatigue. METHODS: We enrolled 14 brainstem or diencephalic stroke (BDS) patients, 9 cortical stroke (CS) patients and 17 multiple sclerosis (MS) patients. The Fatigue Assessment Instrument severity scale was performed at baseline, after 3 months of modafinil and after 1 month of washout. Cognition, mood and somnolence were assessed. A subgroup of 14 patients underwent activity measures before and during treatment. RESULTS: Thirty-one patients completed the study (10 BDS, 9 CS, 12 MS). The responder profile is more frequent in MS than in CS (p = 0.04), and in BDS than in CS patients (p = 0.04). Actiwatch measures showed no changes in activity during, before and after therapy. CONCLUSION: Modafinil was tolerated in 75% of patients at small doses and seemed to improve the severity of fatigue in the MS and BDS groups but not in the CS group. There was no modification in measured physical activity.
Resumo:
Immunogenicity of a long 20-mer NY-ESO-1f peptide vaccine was evaluated in a lung cancer patient TK-f01, immunized with the peptide with Picibanil OK-432 and Montanide ISA-51. We showed that internalization of the peptide was necessary to present CD8 T-cell epitopes on APC, contrasting with the direct presentation of the short epitope. CD8 T-cell responses restricted to all five HLA class I alleles were induced in the patient after the peptide vaccination. Clonal analysis showed that B*35:01 and B*52:01-restricted CD8 T-cell responses were the two dominant responses. The minimal epitopes recognized by A*24:02, B*35:01, B*52:01 and C*12:02-restricted CD8 T-cell clones were defined and peptide/HLA tetramers were produced. NY-ESO-1 91-101 on A*24:02, NY-ESO-1 92-102 on B*35:01, NY-ESO-1 96-104 on B*52:01 and NY-ESO-1 96-104 on C*12:02 were new epitopes first defined in this study. Identification of the A*24:02 epitope is highly relevant for studying the Japanese population because of its high expression frequency (60%). High affinity CD8 T-cells recognizing tumor cells naturally expressing the epitopes and matched HLA were induced at a significant level. The findings suggest the usefulness of a long 20-mer NY-ESO-1f peptide harboring multiple CD8 T-cell epitopes as an NY-ESO-1 vaccine. Characterization of CD8 T-cell responses in immunomonitoring using peptide/HLA tetramers revealed that multiple CD8 T-cell responses comprised the dominant response.
Resumo:
Disease characteristics. Recessive multiple epiphyseal dysplasia (EDM4/rMED) is characterized by joint pain (usually in the hips or knees); malformations of hands, feet, and knees; and scoliosis. Approximately 50% of affected individuals have some abnormal finding at birth, e.g., clubfoot, clinodactyly, or (rarely) cystic ear swelling. Onset of articular pain is variable but usually occurs in late childhood. Stature is usually within the normal range prior to puberty; in adulthood, stature is only slightly diminished and ranges from 150 to 180 cm. Functional disability is mild. Diagnosis/testing. Diagnosis of EDM4/rMED is based on clinical and radiographic findings. SLC26A2 is the only gene known to be associated with EDM4/rMED. Molecular genetic testing is available on a clinical basis. Management. Treatment of manifestations: physiotherapy for muscular strengthening; cautious use of analgesic medications such as nonsteroidal anti-inflammatory drugs (NSAIDs); orthopedic surgery as indicated. Surveillance: radiographs as indicated. Agents/circumstances to avoid: sports involving joint overload. Genetic counseling. EDM4/rMED is inherited in an autosomal recessive manner. At conception, each sib of a proband with EDM4/rMED has a 25% chance of being affected, a 50% chance of being an asymptomatic carrier, and a 25% chance of being unaffected and not a carrier. Once an at-risk sib is known to be unaffected, the risk of his/her being a carrier is 2/3. Carrier testing for at-risk relatives and prenatal testing for pregnancies at increased risk is possible if both disease-causing alleles in the family are known and the carrier status of the parents has been confirmed. Requests for prenatal testing for mild conditions such as EDM4/rMED are not common.