343 resultados para signaling theory
Resumo:
The directional flow of lymph is maintained by hundreds of intraluminal lymphatic valves. Lymphatic valves are crucial to prevent lymphedema, accumulation of fluid in the tissues, and to ensure immune surveillance; yet, the mechanisms of valve formation are only beginning to be elucidated. In this chapter, we will discuss the main steps of lymphatic valve morphogenesis, the important role of mechanotransduction in this process, and the genetic program regulated by the transcription factor Foxc2, which is indispensable for all steps of valve development. Failure to form mature collecting lymphatic vessels and valves causes the majority of postsurgical lymphedema, e.g., in breast cancer patients. Therefore, this knowledge will be useful for diagnostics and development of better treatments of secondary lymphedema.
Resumo:
Strigolactones (SLs) are phytohormones that play a central role in regulating shoot branching. SL perception and signaling involves the F-box protein MAX2 and the hydrolase DWARF14 (D14), proposed to act as an SL receptor. We used strong loss-of-function alleles of the Arabidopsis thaliana D14 gene to characterize D14 function from early axillary bud development through to lateral shoot outgrowth and demonstrated a role of this gene in the control of flowering time. Our data show that D14 distribution in vivo overlaps with that reported for MAX2 at both the tissue and subcellular levels, allowing physical interactions between these proteins. Our grafting studies indicate that neither D14 mRNA nor the protein move over a long range upwards in the plant. Like MAX2, D14 is required locally in the aerial part of the plant to suppress shoot branching. We also identified a mechanism of SL-induced, MAX2-dependent proteasome-mediated degradation of D14. This negative feedback loop would cause a substantial drop in SL perception, which would effectively limit SL signaling duration and intensity.
Yellow submarine of the Wnt/Frizzled signaling: submerging from the G protein harbor to the targets.
Resumo:
The Wnt/Frizzled signaling pathway plays multiple functions in animal development and, when deregulated, in human disease. The G-protein coupled receptor (GPCR) Frizzled and its cognate heterotrimeric Gi/o proteins initiate the intracellular signaling cascades resulting in cell fate determination and polarization. In this review, we summarize the knowledge on the ligand recognition, biochemistry, modifications and interacting partners of the Frizzled proteins viewed as GPCRs. We also discuss the effectors of the heterotrimeric Go protein in Frizzled signaling. One group of these effectors is represented by small GTPases of the Rab family, which amplify the initial Wnt/Frizzled signal. Another effector is the negative regulator of Wnt signaling Axin, which becomes deactivated in response to Go action. The discovery of the GPCR properties of Frizzled receptors not only provides mechanistic understanding to their signaling pathways, but also paves new avenues for the drug discovery efforts.
Resumo:
Skin morphogenesis, maintenance, and healing after wounding require complex epithelial-mesenchymal interactions. In this study, we show that for skin homeostasis, interleukin-1 (IL-1) produced by keratinocytes activates peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) expression in underlying fibroblasts, which in turn inhibits the mitotic activity of keratinocytes via inhibition of the IL-1 signaling pathway. In fact, PPARbeta/delta stimulates production of the secreted IL-1 receptor antagonist, which leads to an autocrine decrease in IL-1 signaling pathways and consequently decreases production of secreted mitogenic factors by the fibroblasts. This fibroblast PPARbeta/delta regulation of the IL-1 signaling is required for proper wound healing and can regulate tumor as well as normal human keratinocyte cell proliferation. Together, these findings provide evidence for a novel homeostatic control of keratinocyte proliferation and differentiation mediated via PPARbeta/delta regulation in dermal fibroblasts of IL-1 signaling. Given the ubiquitous expression of PPARbeta/delta, other epithelial-mesenchymal interactions may also be regulated in a similar manner.
Resumo:
Decapentaplegic (Dpp), the fly homolog of the secreted mammalian BMP2/4 signaling molecules, is involved in almost all aspects of fly development. Dpp has critical functions at all developmental stages, from patterning of the eggshell to the determination of adult intestinal stem cell identity. Here, we focus on recent findings regarding the transcriptional regulatory logic of the pathway, on a new feedback regulator, Pentagone, and on Dpp's roles in scaling and growth of the Drosophila wing.
Resumo:
Hepatitis C virus (HCV) infection induces the endogenous interferon (IFN) system in the liver in some but not all patients with chronic hepatitis C (CHC). Patients with a pre-activated IFN system are less likely to respond to the current standard therapy with pegylated IFN-alpha. Mitochondrial antiviral signaling protein (MAVS) is an important adaptor molecule in a signal transduction pathway that senses viral infections and transcriptionally activates IFN-beta. The HCV NS3-4A protease can cleave and thereby inactivate MAVS in vitro, and, therefore, might be crucial in determining the activation status of the IFN system in the liver of infected patients. We analyzed liver biopsies from 129 patients with CHC to investigate whether MAVS is cleaved in vivo and whether cleavage prevents the induction of the endogenous IFN system. Cleavage of MAVS was detected in 62 of the 129 samples (48%) and was more extensive in patients with a high HCV viral load. MAVS was cleaved by all HCV genotypes (GTs), but more efficiently by GTs 2 and 3 than by GTs 1 and 4. The IFN-induced Janus kinase (Jak)-signal transducer and activator of transcription protein (STAT) pathway was less frequently activated in patients with cleaved MAVS, and there was a significant inverse correlation between cleavage of MAVS and the expression level of the IFN-stimulated genes IFI44L, Viperin, IFI27, USP18, and STAT1. We conclude that the pre-activation status of the endogenous IFN system in the liver of patients with CHC is in part regulated by cleavage of MAVS.
Resumo:
The peroxisome proliferator-activator receptor PPARgamma plays an essential role in vascular biology, modulating macrophage function and atherosclerosis progression. Recently, we have described the beneficial effect of combined activation of the ghrelin/GHS-R1a receptor and the scavenger receptor CD36 to induce macrophage cholesterol release through transcriptional activation of PPARgamma. Although the interplay between CD36 and PPARgamma in atherogenesis is well recognized, the contribution of the ghrelin receptor to regulate PPARgamma remains unknown. Here, we demonstrate that ghrelin triggers PPARgamma activation through a concerted signaling cascade involving Erk1/2 and Akt kinases, resulting in enhanced expression of downstream effectors LXRalpha and ABC sterol transporters in human macrophages. These effects were associated with enhanced PPARgamma phosphorylation independently of the inhibitory conserved serine-84. Src tyrosine kinase Fyn was identified as being recruited to GHS-R1a in response to ghrelin, but failure of activated Fyn to enhance PPARgamma Ser-84 specific phosphorylation relied on the concomitant recruitment of docking protein Dok-1, which prevented optimal activation of the Erk1/2 pathway. Also, substitution of Ser-84 preserved the ghrelin-induced PPARgamma activity and responsiveness to Src inhibition, supporting a mechanism independent of Ser-84 in PPARgamma response to ghrelin. Consistent with this, we found that ghrelin promoted the PI3-K/Akt pathway in a Galphaq-dependent manner, resulting in Akt recruitment to PPARgamma, enhanced PPARgamma phosphorylation and activation independently of Ser-84, and increased expression of LXRalpha and ABCA1/G1. Collectively, these results illustrate a complex interplay involving Fyn/Dok-1/Erk and Galphaq/PI3-K/Akt pathways to transduce in a concerted manner responsiveness of PPARgamma to ghrelin in macrophages.
Resumo:
Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors involved in lipid and glucose homeostasis, inflammation and wound healing. In addition to ligand binding, phosphorylation can also regulate PPARs; the biological effects of phosphorylation depend on the stimulus, the kinase, the PPAR isotype, the residue modified, the cell type and the promoter investigated. The study of this dual regulation mode, which allows PPARs to integrate signals conveyed by lipophilic ligands with those coming from the plasma membrane, may ultimately offer new therapeutic strategies.
Resumo:
SummaryCanonical Wnt signaling is crucial for embryonic development and the homeostasis of certain adult tissues such as the gut and the skin. The role of canonical Wnt signaling in hematopoiesis is still debated. The expression of a dominant-active β-catenin in hematopoietic stem cells (HSCs) enhances the self-renewal capacity of HSCs but is detrimental for long-term hematopoiesis. In contrast, loss of function experiments show that absence of β- and γ-catenin does not impair steady-state hematopoiesis. It has been argued that the inducible deletion of β-catenin using the IFN-responsive Mx promoter may somehow influence stem cell fate. Herein we used the constitutive deletion of β-catenin specifically in hematopoietic cells to show that the absence of β- catenin, as well as γ-catenin deletion, does not impair normal hematopoiesis and self-renewal capacity of HSCs.Dysregulation of canonical Wnt signaling is causal for several types of cancer, including colon carcinoma or breast cancer. Recently, it was found that Wnt signal transduction was upregulated in certain leukemias. Based on these data, we have investigated whether β- and γ-catenin play a role for the induction of leukemias by oncogenic BCR-ABL translocation product. We show that the induction of B-ALL (B cell acute lymphocytic leukemia) is strongly reduced in the absence of γ-catenin, while the induction of CML (chronic myeloid leukemia) occurs at a normal rate. In the combined absence of β- and γ-catenin the induction of both CML and B-ALL is essentially blocked. Consistent with these data others have found that β-catenin is essential for the induction of CML by BCR-ABL.Collectively, we find that β- and γ-catenin are dispensable for normal hematopoiesis but essential for the development of BCR-ABL induced leukemias. These findings suggest that the canonical Wnt pathway may represent a promising target for the therapy of leukemia.RésuméLa voie de signalisation canonique Wnt est essentielle pour le développement embryonnaire ainsi que l'homéostasie de certains tissus adultes, comme les intestins et la peau. Le rôle de la voie canonique Wnt pour l'hématopoïèse est encore incertain. D'un coté l'expression d'une forme active de β-catenine dans les cellules souches de la moelle augmente leur potentiel d'auto- renouvellement mais est préjudiciable pour l'hématopoïèse à long terme. Par contre, l'absence de β- et γ-catenine n'empêche pas le déroulement normal de l'hématopoïèse. La façon dont est supprimée β-catenine, en utilisant le promoteur IFN-inductible Mx, pourrait influencer le sort des cellules souches. Ici nous détruisons β-catenine spécifiquement dans les cellules hématopoïétiques de manière constitutive et montrons que, en combinaison avec l'absence de γ-catenine, l'absence de β-catenine n'affecte pas le déroulement normal de l'hématopoïèse et la capacité des cellules souches de la moelle à se renouveler.Plusieurs sortes de cancers, comme celui du colon ou du sein, sont parfois dus à une dérégulation de la voie canonique Wnt. Récemment, certaines leucémies ont présenté une activation du signal Wnt. A partir de ces données, nous avons examiné si β- et γ-catenine jouent un rôle dans l'induction des leucémies causées par le produit de translocation BCR-ABL. Nous avons montré que l'induction de la leucémie aiguë lymphoïde de cellules Β (LAL-B) est grandement diminuée en l'absence de γ-catenin, alors que l'induction de la leucémie myéloïde chronique (LMC) n'est pas affectée. En l'absence des deux catenines, l'induction des deux leucémies LAL-B et LMC est presque complètement bloquée. En confirmation de nos données, un autre groupe a montré que β-catenine est essentielle pour le développement de la LMC. Ensemble, ces données nous montrent que β- et γ-catenine ne sont pas nécessaires pour l'hématopoïèse normale, mais essentielle pour le développement des leucémies induites par BCR-ABL. Cela suggère que la voie de signalisation canonique Wnt est une cible prometteuse pour de futures thérapies.
Resumo:
From a theoretical perspective, an extension to the Full Range leadership Theory (FRLT) seems needed. In this paper, we explain why instrumental leadership--a class of leadership includes leader behaviors focusing on task and strategic aspects that are neither values nor exchange oriented--can fulfill this extension. Instrument leadership is composed of four factors: environmental monitoring, strategy formulation and implementation, path-goal facilitation and outcome monitoring; these aspects of leadership are currently not included in any of the FRLT's nine leadership scales (as measured by the MLQ--Multifactor Leadership Questionnaire). We present results from two empirical studies using very large samples from a wide array of countries (N > 3,000) to examine the factorial, discriminant and criterion-related validity of the instrumental leadership scales. We find support for a four-factor instrumental leadership model, which explains incremental variance in leader outcomes in over and above transactional and transformational leadership.
Resumo:
In the 1920s, Ronald Fisher developed the theory behind the p value and Jerzy Neyman and Egon Pearson developed the theory of hypothesis testing. These distinct theories have provided researchers important quantitative tools to confirm or refute their hypotheses. The p value is the probability to obtain an effect equal to or more extreme than the one observed presuming the null hypothesis of no effect is true; it gives researchers a measure of the strength of evidence against the null hypothesis. As commonly used, investigators will select a threshold p value below which they will reject the null hypothesis. The theory of hypothesis testing allows researchers to reject a null hypothesis in favor of an alternative hypothesis of some effect. As commonly used, investigators choose Type I error (rejecting the null hypothesis when it is true) and Type II error (accepting the null hypothesis when it is false) levels and determine some critical region. If the test statistic falls into that critical region, the null hypothesis is rejected in favor of the alternative hypothesis. Despite similarities between the two, the p value and the theory of hypothesis testing are different theories that often are misunderstood and confused, leading researchers to improper conclusions. Perhaps the most common misconception is to consider the p value as the probability that the null hypothesis is true rather than the probability of obtaining the difference observed, or one that is more extreme, considering the null is true. Another concern is the risk that an important proportion of statistically significant results are falsely significant. Researchers should have a minimum understanding of these two theories so that they are better able to plan, conduct, interpret, and report scientific experiments.
Resumo:
β-Catenin signaling has recently been tied to the emergence of tolerogenic dendritic cells (DCs). In this article, we demonstrate a novel role for β-catenin in directing DC subset development through IFN regulatory factor 8 (IRF8) activation. We found that splenic DC precursors express β-catenin, and DCs from mice with CD11c-specific constitutive β-catenin activation upregulated IRF8 through targeting of the Irf8 promoter, leading to in vivo expansion of IRF8-dependent CD8α(+), plasmacytoid, and CD103(+)CD11b(-) DCs. β-Catenin-stabilized CD8α(+) DCs secreted elevated IL-12 upon in vitro microbial stimulation, and pharmacological β-catenin inhibition blocked this response in wild-type cells. Upon infections with Toxoplasma gondii and vaccinia virus, mice with stabilized DC β-catenin displayed abnormally high Th1 and CD8(+) T lymphocyte responses, respectively. Collectively, these results reveal a novel and unexpected function for β-catenin in programming DC differentiation toward subsets that orchestrate proinflammatory immunity to infection.