247 resultados para protein tnfaip 3


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glutamate transport through astrocytic excitatory amino-acid transporters (EAAT)-1 and EAAT-2 is paramount for neural homeostasis. EAAT-1 has been reported in secreted extracellular microvesicles (eMV, such as exosomes) and because the protein kinase C (PKC) family controls the sub-cellular distribution of EAATs, we have explored whether PKCs drive EAATs into eMV. Using rat primary astrocytes, confocal immunofluorescence and ultracentrifugation on sucrose gradient we here report that PKC activation by phorbol myristate acetate (PMA) reorganizes EAAT-1 distribution and reduces functional [(3)H]-aspartate reuptake. Western-blots show that EAAT-1 is present in eMV from astrocyte conditioned medium, together with NaK ATPase and glutamine synthetase all being further increased after PMA treatment. However, nanoparticle tracking analysis reveals that PKC activation did not change particle concentration. Functional analysis indicates that eMV have the capacity to reuptake [(3)H]-aspartate. In vivo, we demonstrate that spinal astrocytic reaction induced by peripheral nerve lesion (spared nerve injury, SNI) is associated with a phosphorylation of PKC δ together with a shift of EAAT distribution ipsilaterally. Ex vivo, spinal explants from SNI rats release eMV with an increased content of NaK ATPase, EAAT-1 and EAAT-2. These data indicate PKC and cell activation as important regulators of EAAT-1 incorporation in eMV, and raise the possibility that microvesicular EAAT-1 may exert extracellular functions. Beyond a putative role in neuropathic pain, this phenomenon may be important for understanding neural homeostasis and a wide range of neurological diseases associated with astrocytic reaction as well as non-neurological diseases linked to eMV release.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: Interleukin-1 (IL-1) mediates ischemia-reperfusion injury and graft inflammation after heart transplantation. IL-1 affects target cells through two distinct types of transmembrane receptors, type-1 receptor (IL-1R1), which transduces the signal, and the non-signaling type-2 receptor (IL-1R2), which acts as a ligand sink that subtracts IL-1beta from IL-1R1. We analyzed the efficacy of adenovirus (Ad)-mediated gene transfer of a soluble IL-1R2-Ig fusion protein in delaying cardiac allograft rejection and the mechanisms underlying the protective effect. METHODS: IL-1 inhibition by IL-1R2-Ig was tested using an in vitro functional assay whereby endothelial cells preincubated with AdIL-1R2-Ig or control virus were stimulated with recombinant IL-1beta or tumor necrosis factor-alpha (TNF-alpha), and urokinase-type plasminogen activator (u-PA) induction was measured by zymography. AdIL-1R2-Ig was delivered to F344 rat donor hearts ex vivo, which were placed in the abdominal position in LEW hosts. Intragraft inflammatory cell infiltrates and proinflammatory cytokine expression were analyzed by immunohistochemistry and real-time reverse transcriptase-polymerase chain reaction (RT-PCR), respectively. RESULTS: IL-1R2-Ig specifically inhibited IL-1beta-induced u-PA responses in vitro. IL-1R2-Ig gene transfer reduced intragraft monocytes/macrophages and CD4(+) cell infiltrates (p<0.05), TNF-alpha and transforming growth factor-beta (TGF-beta) expression (p<0.05), and prolonged graft survival (15.6+/-5.7 vs 10.3+/-2.5 days with control vector and 10.1+/-2.1 days with buffer alone; p<0.01). AdIL-1R2-Ig combined with a subtherapeutic regimen of cyclosporin A (CsA) was superior to CsA alone (19.4+/-3.0 vs 15.9+/-1.8 days; p<0.05). CONCLUSIONS: Soluble IL-1 type-2 receptor gene transfer attenuates cardiac allograft rejection in a rat model. IL-1 inhibition may be useful as an adjuvant therapy in heart transplantation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A variety of cellular proteins has the ability to recognize DNA lesions induced by the anti-cancer drug cisplatin, with diverse consequences on their repair and on the therapeutic effectiveness of this drug. We report a novel gene involved in the cell response to cisplatin in vertebrates. The RDM1 gene (for RAD52 Motif 1) was identified while searching databases for sequences showing similarities to RAD52, a protein involved in homologous recombination and DNA double-strand break repair. Ablation of RDM1 in the chicken B cell line DT40 led to a more than 3-fold increase in sensitivity to cisplatin. However, RDM1-/- cells were not hypersensitive to DNA damages caused by ionizing radiation, UV irradiation, or the alkylating agent methylmethane sulfonate. The RDM1 protein displays a nucleic acid binding domain of the RNA recognition motif (RRM) type. By using gel-shift assays and electron microscopy, we show that purified, recombinant chicken RDM1 protein interacts with single-stranded DNA as well as double-stranded DNA, on which it assembles filament-like structures. Notably, RDM1 recognizes DNA distortions induced by cisplatin-DNA adducts in vitro. Finally, human RDM1 transcripts are abundant in the testis, suggesting a possible role during spermatogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the present work was to study whole body protein synthesis and breakdown, as well as energy metabolism, in very low birth weight premature infants (less than 1500 g) during their rapid growth phase. Ten very low birth weight infants were studied during their first and second months of life. They received a mean energy intake of 114 kcal/kg X day and 3 g protein/kg X day as breast milk or milk formula. The average weight gain was 15 g/kg X day. The apparent energy digestibility was 88%, i.e. 99 kcal/kg X day. Their resting postprandial energy expenditure was 58 kcal/kg X day, indicating that 41 kcal/kg X day was retained. The apparent protein digestibility was 89%, i.e. 2.65 g/kg X day. Their rate of protein oxidation was 0.88 g/kg X day so that protein retention was 1.76 g/kg X day. There was a linear relationship between N retention and N intake (r = 0.78, p less than 0.001). The slope of the regression line indicates a net efficiency of N utilization of 67%. Estimates of body composition from the energy balance, coupled with N balance method, showed that 25% of the gain was fat and 75% was lean tissue. Whole body protein synthesis and breakdown were determined using repeated oral administration of 15N glycine for 60-72 h, and 15N enrichment in urinary urea was measured. Protein synthesis averaged 11.2 g/kg X day and protein breakdown 9.4 g/kg X day. Muscular protein breakdown, as estimated by 3-methylhistidine excretion, contributed to 12% of the total protein breakdown.(ABSTRACT TRUNCATED AT 250 WORDS)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We analyzed the expression of glial hyaluronate-binding protein (GHAP), an integral component of the extracellular matrix, in aggregating brain cell cultures of fetal rat telencephalon using immunofluorescence. GHAP immunoreactivity appeared after 1 week in culture, simultaneous with the first deposits of myelin basic protein, and showed a development-dependent increase. Comparison of glia-enriched and neuron-enriched cultures showed that only glial cells express GHAP. Three peptide growth factors, epidermal growth factor, fibroblast growth factor and platelet-derived growth factor, which are known to stimulate the differentiation of glial cells, modulated the deposit of GHAP immunoreactivity. The 3-dimensional structure of aggregate cultures promoted GHAP deposition, suggesting that cell-cell interactions are required for extracellular matrix formation. Furthermore GHAP production seemed to depend on the developmental stage of the glial cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A highly sensitive ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method was developed for the quantification of buprenorphine and its major metabolite norbuprenorphine in human plasma. In order to speed up the process and decrease costs, sample preparation was performed by simple protein precipitation with acetonitrile. To the best of our knowledge, this is the first application of this extraction technique for the quantification of buprenorphine in plasma. Matrix effects were strongly reduced and selectivity increased by using an efficient chromatographic separation on a sub-2μm column (Acquity UPLC BEH C18 1.7μm, 2.1×50mm) in 5min with a gradient of ammonium formate 20mM pH 3.05 and acetonitrile as mobile phase at a flow rate of 0.4ml/min. Detection was made using a tandem quadrupole mass spectrometer operating in positive electrospray ionization mode, using multiple reaction monitoring. The procedure was fully validated according to the latest Food and Drug Administration guidelines and the Société Française des Sciences et Techniques Pharmaceutiques. Very good results were obtained by using a stable isotope-labeled internal standard for each analyte, to compensate for the variability due to the extraction and ionization steps. The method was very sensitive with lower limits of quantification of 0.1ng/ml for buprenorphine and 0.25ng/ml for norbuprenorphine. The upper limit of quantification was 250ng/ml for both drugs. Trueness (98.4-113.7%), repeatability (1.9-7.7%), intermediate precision (2.6-7.9%) and internal standard-normalized matrix effects (94-101%) were in accordance with international recommendations. The procedure was successfully used to quantify plasma samples from patients included in a clinical pharmacogenetic study and can be transferred for routine therapeutic drug monitoring in clinical laboratories without further development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this issue of The EMBO Journal, Chattopadhyay et al (2010) describe a surprising new mechanism for how viral dsRNA detection by the RIG-I/MAVS signalling complex can initiate apoptosis. Independent of its transcriptional function, a pool of interferon regulatory factor (IRF)-3 activated downstream of MAVS can bind to and activate cytosolic Bax, resulting in Bax translocation to the mitochondria and initiation of the intrinsic apoptotic pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study demonstrates that the expression of the phenol UDP-glucuronosyltransferase 1 gene (UGT1A1) is regulated at the transcriptional level by thyroid hormone in rat liver. Following 3,5, 3'-triiodo-L-thyronine (T3) stimulation in vivo, there is a gradual increase in the amount of UGT1A1 mRNA with maximum levels reached 24 h after treatment. In comparison, induction with the specific inducer, 3-methylcholanthrene (3-MC), results in maximal levels of UGT1A1 mRNA after 8 h of treatment. In primary hepatocyte cultures, the stimulatory effect of both T3 and 3-MC is also observed. This induction is suppressed by the RNA synthesis inhibitor actinomycin D, indicating that neither inducer acts at the level of mRNA stabilization. Indeed, nuclear run-on assays show a 3-fold increase in UGT1A1 transcription after T3 treatment and a 6-fold increase after 3-MC stimulation. This transcriptional induction by T3 is prevented by cycloheximide in primary hepatocyte cultures, while 3-MC stimulation is only partially affected after prolonged treatment with the protein synthesis inhibitor. Together, these data provide evidence for a transcriptional control of UGT1A1 synthesis and indicate that T3 and 3-MC use different activation mechanisms. Stimulation of the UGT1A1 gene by T3 requires de novo protein synthesis, while 3-MC-dependent activation is the result of a direct action of the compound, most likely via the aromatic hydrocarbon receptor complex.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Yeast vacuoles fragment and fuse in response to environmental conditions, such as changes in osmotic conditions or nutrient availability. Here we analyze osmotically induced vacuole fragmentation by time-lapse microscopy. Small fragmentation products originate directly from the large central vacuole. This happens by asymmetrical scission rather than by consecutive equal divisions. Fragmentation occurs in two distinct phases. Initially, vacuoles shrink and generate deep invaginations that leave behind tubular structures in their vicinity. Already this invagination requires the dynamin-like GTPase Vps1p and the vacuolar proton gradient. Invaginations are stabilized by phosphatidylinositol 3-phosphate (PI(3)P) produced by the phosphoinositide 3-kinase complex II. Subsequently, vesicles pinch off from the tips of the tubular structures in a polarized manner, directly generating fragmentation products of the final size. This phase depends on the production of phosphatidylinositol-3,5-bisphosphate and the Fab1 complex. It is accelerated by the PI(3)P- and phosphatidylinositol 3,5-bisphosphate-binding protein Atg18p. Thus vacuoles fragment in two steps with distinct protein and lipid requirements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Data regarding immunomodulatory effects of parenteral n-3 fatty acids in sepsis are conflicting. In this study, the effect of administration of parenteral n-3 fatty acids on markers of brain injury, incidence of sepsis-associated delirium, and inflammatory mediators in septic patients was investigated. METHODS: Fifty patients with sepsis were randomized to receive either 2 ml/kg/day of a lipid emulsion containing highly refined fish oil (equivalent to n-3 fatty acids 0.12 mg/kg/day) during 7 days after admission to the intensive care unit or standard treatment. Markers of brain injury and inflammatory mediators were measured on days 1, 2, 3 and 7. Assessment for sepsis-associated delirium was performed daily. The primary outcome was the difference in S-100β from baseline to peak level between both the intervention and the control group, compared by t-test. Changes of all markers over time were explored in both groups, fitting a generalized estimating equations model. RESULTS: Mean difference in change of S-100β from baseline to peak level was 0.34 (95% CI: -0.18-0.85) between the intervention and control group, respectively (P = 0.19). We found no difference in plasma levels of S-100β, neuron-specific enolase, interleukin (IL)-6, IL-8, IL-10, and C-reactive protein between groups over time. Incidence of sepsis-associated delirium was 75% in the intervention and 71% in the control groups (risk difference 4%, 95% CI -24-31%, P = 0.796). CONCLUSION: Administration of n-3 fatty acids did not affect markers of brain injury, incidence of sepsis-associated delirium, and inflammatory mediators in septic patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A-kinase anchoring proteins (AKAPs) target the cAMP-regulated protein kinase (PKA) to its physiological substrates. We recently identified a novel anchoring protein, called AKAP-Lbc, which functions as a PKA-targeting protein as well as a guanine nucleotide exchange factor (GEF) for RhoA. We demonstrated that AKAP-Lbc Rho-GEF activity is stimulated by the alpha subunit of the heterotrimeric G protein G12. Here, we identified 14-3-3 as a novel regulatory protein interacting with AKAP-Lbc. Elevation of the cellular concentration of cAMP activates the PKA holoenzyme anchored to AKAP-Lbc, which phosphorylates the anchoring protein on the serine 1565. This phosphorylation event induces the recruitment of 14-3-3, which inhibits the Rho-GEF activity of AKAP-Lbc. AKAP-Lbc mutants that fail to interact with PKA or with 14-3-3 show a higher basal Rho-GEF activity as compared to the wild-type protein. This suggests that, under basal conditions, 14-3-3 maintains AKAP-Lbc in an inactive state. Therefore, while it is known that AKAP-Lbc activity can be stimulated by Galpha12, in this study we demonstrated that it is inhibited by the anchoring of both PKA and 14-3-3.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pathogenic mutations in TMPRSS3, which encodes a transmembrane serine protease, cause non-syndromic deafness DFNB8/10. Missense mutations map in the low density-lipoprotein receptor A (LDLRA), scavenger-receptor cysteine-rich (SRCR), and protease domains of the protein, indicating that all domains are important for its function. TMPRSS3 undergoes proteolytic cleavage and activates the ENaC sodium channel in a Xenopus oocyte model system. To assess the importance of this gene in non-syndromic childhood or congenital deafness in Turkey, we screened for mutations affected members of 25 unrelated Turkish families. The three families with the highest LOD score for linkage to chromosome 21q22.3 were shown to harbor P404L, R216L, or Q398X mutations, suggesting that mutations in TMPRSS3 are a considerable contributor to non-syndromic deafness in the Turkish population. The mutant TMPRSS3 harboring the novel R216L missense mutation within the predicted cleavage site of the protein fails to undergo proteolytic cleavage and is unable to activate ENaC, thus providing evidence that pre-cleavage of TMPRSS3 is mandatory for normal function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aldosterone stimulates transepithelial Na+ transport in the toad bladder, and thyroid hormone antagonizes this mineralocorticoid action. In the present study, we assessed the influence of these two hormones on the biosynthesis of (Na+,K+)ATPase, the major driving force of Na+ transport. Rates of enzyme synthesis were estimated by immunoprecipitation with monospecific alpha (96,000 daltons) and beta (60,000 daltons) subunit antibodies. After a 30-min pulse of intact tissue with [35S]methionine, the anti-alpha-serum recognized the 96,000-dalton alpha subunit and the anti-beta-serum, a 42,000-dalton protein, in total cell extracts. The biosynthesis rates of both these proteins were increased 2.8- and 2.4-fold respectively, over controls by 80 nM aldosterone after 18 h of hormone treatment. The hormonal effect was not apparent up to 3 h of incubation and was dose dependent between 0.2 and 20 nM aldosterone. The hormonal induction was antagonized by spironolactone (500-fold excess) but not by amiloride. The action of aldosterone thus seems to be a receptor-mediated process and a primary event independent of the Na+ permeability of the apical membrane. Thyroid hormone, on the other hand, had no effect on either basal or aldosterone-stimulated synthesis rates of both enzyme proteins. The results demonstrate a direct effect of aldosterone on gene expression of the (Na+,K+)-ATPase. Ultimately, this phenomenon could be linked to the late mineralocorticoid action of this hormone. On the other hand, thyroid hormone, in contrast to the situation in mammals, does not stimulate de novo enzyme synthesis in amphibia. Neither can the antimineralocorticoid action of thyroid hormone in the toad bladder be explained by an inhibition of the (Na+,K+)-ATPase synthesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Indoleamine 2,3-dioxygenase 1 (IDO1) is an immunosuppressive molecule expressed in some subsets of normal and neoplastic cells. Mature human dendritic cells (DCs) have been shown to express IDO1, but little is known about its expression and function during DC differentiation from bone marrow hematopoietic stem/progenitor cells (HSPCs). Here, we show that during in vitro differentiation along the myeloid DC lineage, CD34(+) HSPCs acquire IDO1 expression, which acts in a tolerogenic manner by inducing a population of fully functional CD4(+)CD25(+) FOXP3(+) T-regulatory cells. Phenotypically, CD1a(+)CD14(-) HPSC-derived DCs expressed IDO1, langerin, CD11b, and CD1c. Cell-sorting experiments demonstrated that IDO1 expression is found in a subset of CD1a(+)CD14(-)langerin(+) cells, expressing CD103, which is capable of inducing T-regulatory cells in an IDO1-dependent manner. In conclusion, DC differentiation from CD34(+) HSPCs results in the expression of a functionally active IDO1 protein in CD1a(+)langerin(+), CD103-expressing DCs. These data point toward IDO1 expression as part of a tolerogenic signature during DC development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: Renal resistive index (RRI) varies directly with renal vascular stiffness and pulse pressure. RRI correlates positively with arteriolosclerosis in damaged kidneys and predicts progressive renal dysfunction. Matrix Gla-protein (MGP) is a vascular calcification inhibitor that needs vitamin K to be activated. Inactive MGP, known as desphospho-uncarboxylated MGP (dp-ucMGP), can be measured in plasma and has been associated with various cardiovascular (CV) markers, CV outcomes and mortality. In this study we hypothesize that increased RRI is associated with high levels of dp-ucMGP. DESIGN AND METHOD: We recruited participants via a multi-center family-based cross-sectional study in Switzerland exploring the role of genes and kidney hemodynamics in blood pressure regulation. Dp-ucMGP was quantified in plasma samples by sandwich ELISA. Renal doppler sonography was performed using a standardized protocol to measure RRIs on 3 segmental arteries in each kidney. The mean of the 6 measures was reported. Multiple regression analysis was performed to estimate associations between RRI and dp-ucMGP adjusting for sex, age, pulse pressure, mean pressure, renal function and other CV risk factors. RESULTS: We included 1035 participants in our analyses. Mean values were 0.64 ± 0.06 for RRI and 0.44 ± 0.21 (nmol/L) for dp-ucMGP. RRI was positively associated with dp-ucMGP both before and after adjustment for sex, age, body mass index, pulse pressure, mean pressure, heart rate, renal function, low and high density lipoprotein, smoking status, diabetes, blood pressure and cholesterol lowering drugs, and history of CV disease (P < 0.001). CONCLUSIONS: RRI is independently and positively associated with high levels of dp-ucMGP after adjustment for pulse pressure and common CV risk factors. Further studies are needed to determine if vitamin K supplementation can have a positive effect on renal vascular stiffness and kidney function.