275 resultados para embryonic death


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Successful pregnancy depends on well coordinated developmental events involving both maternal and embryonic components. Although a host of signaling pathways participate in implantation, decidualization, and placentation, whether there is a common molecular link that coordinates these processes remains unknown. By exploiting genetic, molecular, pharmacological, and physiological approaches, we show here that the nuclear transcription factor peroxisome proliferator-activated receptor (PPAR) delta plays a central role at various stages of pregnancy, whereas maternal PPARdelta is critical to implantation and decidualization, and embryonic PPARdelta is vital for placentation. Using trophoblast stem cells, we further elucidate that a reciprocal relationship between PPARdelta-AKT and leukemia inhibitory factor-STAT3 signaling pathways serves as a cell lineage sensor to direct trophoblast cell fates during placentation. This novel finding of stage-specific integration of maternal and embryonic PPARdelta signaling provides evidence that PPARdelta is a molecular link that coordinates implantation, decidualization, and placentation crucial to pregnancy success. This study is clinically relevant because deferral of on time implantation leads to spontaneous pregnancy loss, and defective trophoblast invasion is one cause of preeclampsia in humans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glucocorticoids (GCs) are routinely administered systemically or injected into the eye when treating numerous ocular diseases; however, their toxicity on the retinal microvasculature has not been previously investigated. In this article, the effects of hydrocortisone (Hydro), dexamethasone, dexamethasone-phosphate and triamcinolone acetonide (TA) were evaluated in vitro on human skin microcirculation cells and, bovine endothelial retinal cells, ex-vivo, on flat mounted rat retinas. The degree of GCs induced endothelial cell death varied according to the endothelial cell type and GCs chemical properties. GCs toxicity was higher in skin microvascular endothelial cells and for hydrophobic GC formulations. The mechanism of cell death differed between GCs, Hydro and TA activated the leukocyte elastase inhibitor/L-DNase II pathways but did not activate caspases. The mechanisms of cell death observed in cell cultures were similar to those observed in rat retinal explants. Taken together these results indicate that particular attention should be paid to the potential vascular side effects when administrating GCs clinically and in particular when developing sustained-release intraocular devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Autopsy-negative sudden cardiac deaths (SCD) seen in forensic practice are most often thought to be the result of sudden arrhythmic death syndrome. Postmortem genetic analysis is recommended in such cases, but is currently performed in only a few academic centers. In order to determine actual current practice, an on-line questionnaire was sent by e-mail to members of various forensic medical associations. The questions addressed routine procedures employed in cases of sudden cardiac death (autopsy ordering, macroscopic and microscopic cardiac examination, conduction tissue examination, immunohistochemistry and electron microscopy, biochemical markers, sampling and storage of material for genetic analyses, toxicological analyses, and molecular autopsy). Some questions concerned the legal and ethical aspects of genetic analyses in postmortem examinations, as well as any existing multidisciplinary collaborations in SCD cases. There were 97 respondents, mostly from European countries. Genetic testing in cases of sudden cardiac death is rarely practiced in routine forensic investigation. Approximately 60% of respondents reported not having the means to perform genetic postmortem testing and 40% do not collect adequate material to perform these investigations at a later date, despite working at university hospitals. The survey demonstrated that many of the problems involved in the adequate investigation of SCD cases are often financial in origin, due to the fact that activities in forensic medicine are often paid by and dependent on the judicial authorities. Problems also exist concerning the contact with family members and/or the family doctor, as well as the often-nonexistent collaboration with others clinicians with special expertise beneficial in the investigation of SCD cases, such as cardiologists and geneticists. This study highlights the importance in establishing guidelines for molecular autopsies in forensic medicine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PIDD (p53-induced protein with a death domain [DD]), together with the bipartite adapter protein RAIDD (receptor-interacting protein-associated ICH-1/CED-3 homologous protein with a DD), is implicated in the activation of pro-caspase-2 in a high molecular weight complex called the PIDDosome during apoptosis induction after DNA damage. To investigate the role of PIDD in cell death initiation, we generated PIDD-deficient mice. Processing of caspase-2 is readily detected in the absence of PIDDosome formation in primary lymphocytes. Although caspase-2 processing is delayed in simian virus 40-immortalized pidd(-/-) mouse embryonic fibroblasts, it still depends on loss of mitochondrial integrity and effector caspase activation. Consistently, apoptosis occurs normally in all cell types analyzed, suggesting alternative biological roles for caspase-2 after DNA damage. Because loss of either PIDD or its adapter molecule RAIDD did not affect subcellular localization, nuclear translocation, or caspase-2 activation in high molecular weight complexes, we suggest that at least one alternative PIDDosome-independent mechanism of caspase-2 activation exists in mammals in response to DNA damage.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diabetes is a recognized risk factor for cardiovascular diseases and heart failure. Diabetic cardiovascular dysfunction also underscores the development of diabetic retinopathy, nephropathy and neuropathy. Despite the broad availability of antidiabetic therapy, glycemic control still remains a major challenge in the management of diabetic patients. Hyperglycemia triggers formation of advanced glycosylation end products (AGEs), activates protein kinase C, enhances polyol pathway, glucose autoxidation, which coupled with elevated levels of free fatty acids, and leptin have been implicated in increased generation of superoxide anion by mitochondria, NADPH oxidases and xanthine oxidoreductase in diabetic vasculature and myocardium. Superoxide anion interacts with nitric oxide forming the potent toxin peroxynitrite via diffusion limited reaction, which in concert with other oxidants triggers activation of stress kinases, endoplasmic reticulum stress, mitochondrial and poly(ADP-ribose) polymerase 1-dependent cell death, dysregulates autophagy/mitophagy, inactivates key proteins involved in myocardial calcium handling/contractility and antioxidant defense, activates matrix metalloproteinases and redox-dependent pro-inflammatory transcription factors (e.g. nuclear factor kappaB) promoting inflammation, AGEs formation, eventually culminating in myocardial dysfunction, remodeling and heart failure. Understanding the complex interplay of oxidative/nitrosative stress with pro-inflammatory, metabolic and cell death pathways is critical to devise novel targeted therapies for diabetic cardiomyopathy, which will be overviewed in this brief synopsis. This article is part of a Special Issue entitled: Autophagy and protein quality control in cardiometabolic diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Determining a specific death cause may facilitate individualized therapy in patients with heart failure (HF). Cardiac resynchronization therapy (CRT) decreased mortality in the Cardiac Resynchronization in Heart Failure trial by reducing pump failure and sudden cardiac death (SCD). This study analyzes predictors of specific causes of death. METHODS AND RESULTS: Univariate and multivariate analyses used 8 baseline and 3-month post-randomization variables to predict pump failure and SCD (categorized as "definite," "probable," and "possible"). Of 255 deaths, 197 were cardiovascular. There were 71 SCDs with a risk reduction by CRT of 0.47 (95% confidence interval 0.29-0.76; P = .002) with similar reductions in SCD classified as definite, probable, and possible. Univariate SCD predictors were 3-month HF status (mitral regurgitation [MR] severity, plasma brain natriuretic peptide [BNP], end-diastolic volume, and systolic blood pressure), whereas randomization to CRT decreased risk. Multivariate SCD predictors were randomization to CRT 0.56 (0.53-0.96, P = .035) and 3-month MR severity 1.82 (1.77-2.60, P = .0012). Univariate pump failure death predictors related to baseline HF state (quality of life score, interventricular mechanical delay, end-diastolic volume, plasma BNP, MR severity, and systolic pressure), whereas randomization to CRT and nonischemic cardiomyopathy decreased risk; multivariate predictors of pump failure death were baseline plasma BNP and systolic pressure and randomization to CRT. CONCLUSION: CRT decreased SCD in patients with systolic HF and ventricular dyssynchrony. SCD risk was increased with increased severity of MR (including the 3-month value for MR as a time-dependent covariate) and reduced by randomization to CRT. HF death was increased related to the level of systolic blood pressure, log BNP, and randomization to CRT. These results emphasize the importance and interdependence of HF severity to mortality from pump failure and SCD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Embryonic stem (ES) cells-derived cardiomyocytes represent an attractive source of cells in cell replacement therapies for heart disease. However, controlled cardiogenic differentiation of ES cells requires a complete understanding of the complex molecular mechanisms regulating the differentiation process. We have previously shown that differentiation of ES cells into cardiomyocytes is favored by inactivation of the Notch 1 receptor pathway. In the present study, we therefore compared two ES cell lines, one with normal Notchl expression and one carrying deleted Notchl receptor alleles (Notchl-deleted ES cells) in order to identify genes responsible for the increased propensity of Notchl-deleted ES cells to produce cardiomyocytes. Using RNA-sequencing, we found approximately 300 coding and noncoding transcripts, which are differently expressed in undifferentiated Notchl-deleted ES cells. Since accumulating evidences indicate that long noncoding RNAs (IncRNAs) play important roles in ES cell pluripotency and differentiation, we focused our analysis on modulated IncRNAs. In particular, two IncRNAs, named here lnc 1230 and lnc 1335, are highly induced in the absence of Notchl receptor expression. These represent therefore prime candidates that could favor cardiogenic commitment in undifferentiated ES cells. Indeed, we demonstrate that forced expression of these two IncRNAs in wild-type ES cells result in a significant increase of the number of cardiac progenitor cells and cardiomyocytes in the differentiated progeny of these ES cells. Furthermore, we also identify several microRNAs that are differentially modulated in absence of Notchl expression. Among these are miR-142-5p and miR- 381-3p. Interestingly, both lncl230 and lncl335 are targets of these two microRNAs. Altogether, these data suggest that Notchl-dependent noncoding gene networks, implicating microRNAs and IncRNAs, control embryonic stem cell commitment into the mesodermal and cardiac lineages already at the undifferentiated state. - Les cardiomyocytes issus cellules souches embryonnaires sont une source très prometteuse pour les thérapies cellulaire de remplacement dans le cadre des maladies cardiaques. Cependant, l'utilisation de telles cellules requiert une compréhension poussée des mécanismes moléculaire régulant la différenciation. Nous avons par le passé démontré que la différenciation des cellules souches embryonnaires en cardiomyocytes est favorisée par l'inactivation de la voie d'activation intracellulaire dépendante du récepteur Notch 1. Nous avons donc comparé deux lignées de cellules souches embryonnaires, une présentant une voie d'activation Notchl normale et une chez laquelle les allèles codant pour le récepteur Notchl avaient été invalidés, de façon à identifier les gènes impliqués dans la capacité augmentée des cellules déficientes à produire des cardiomyocytes. En utilisant du séquençage d'ARN à haut débit, nous avons trouvé environ 300 gènes différemment exprimés dans les cellules déficientes pour Notchl. Par ailleurs, des évidences de plus en plus nombreuses suggèrent qu'une nouvelle classe de molécules appelée « long noncoding RNAs » joue un rôle prépondérant dans la maintenance de l'état non différencié et de la capacité de différenciation des cellules souches embryonnaires. Nous avons trouvé que plusieurs « long noncoding RNAs » étaient modulés en l'absence de Notchl, et en particulier deux molécules que nous avons appelées lncl230 et lncl335. Ces derniers représentent des candidats potentiels devant permettre de favoriser la production de cardiomyocytes. Nous avons en effet démontré que la surexpression de ces deux candidats dans des cellules souches embryonnaires résultait en une surproduction de cardiomyocytes. De plus, nous avons également identifié plusieurs microRNAs dont l'expression était modulée dans les cellules souches embryonnaires déficientes dans la voie Notchl. De façon intéressante, parmi ces microRNAs, le miR-142-5p et le miR-381-3p sont capables de cibler lncl230 and lncl335. Dans l'ensemble, ces résultats indiquent donc que des réseaux d'interaction dépendant de la voie d'activation Notch 1 et impliquant des ARNs non codant existent dans les cellules souches embryonnaires pour réguler leur différenciation en différent types cellulaires spécifiques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Mortality among HIV-infected persons is decreasing, and causes of death are changing. Classification of deaths is hampered because of low autopsy rates, frequent deaths outside of hospitals, and shortcomings of International Statistical Classification of Diseases and Related Health Problems (ICD-10) coding. METHODS: We studied mortality among Swiss HIV Cohort Study (SHCS) participants (1988-2010) and causes of death using the Coding Causes of Death in HIV (CoDe) protocol (2005-2009). Furthermore, we linked the SHCS data to the Swiss National Cohort (SNC) cause of death registry. RESULTS: AIDS-related mortality peaked in 1992 [11.0/100 person-years (PY)] and decreased to 0.144/100 PY (2006); non-AIDS-related mortality ranged between 1.74 (1993) and 0.776/100 PY (2006); mortality of unknown cause ranged between 2.33 and 0.206/100 PY. From 2005 to 2009, 459 of 9053 participants (5.1%) died. Underlying causes of deaths were: non-AIDS malignancies [total, 85 (19%) of 446 deceased persons with known hepatitis C virus (HCV) status; HCV-negative persons, 59 (24%); HCV-coinfected persons, 26 (13%)]; AIDS [73 (16%); 50 (21%); 23 (11%)]; liver failure [67 (15%); 12 (5%); 55 (27%)]; non-AIDS infections [42 (9%); 13 (5%); 29 (14%)]; substance use [31 (7%); 9 (4%); 22 (11%)]; suicide [28 (6%); 17 (7%), 11 (6%)]; myocardial infarction [28 (6%); 24 (10%), 4 (2%)]. Characteristics of deceased persons differed in 2005 vs. 2009: median age (45 vs. 49 years, respectively); median CD4 count (257 vs. 321 cells/μL, respectively); the percentage of individuals who were antiretroviral therapy-naïve (13 vs. 5%, respectively); the percentage of deaths that were AIDS-related (23 vs. 9%, respectively); and the percentage of deaths from non-AIDS-related malignancies (13 vs. 24%, respectively). Concordance in the classification of deaths was 72% between CoDe and ICD-10 coding in the SHCS; and 60% between the SHCS and the SNC registry. CONCLUSIONS: Mortality in HIV-positive persons decreased to 1.33/100 PY in 2010. Hepatitis B or C virus coinfections increased the risk of death. Between 2005 and 2009, 84% of deaths were non-AIDS-related. Causes of deaths varied according to data source and coding system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ischemia/reperfusion (I/R) is a pivotal mechanism of liver damage after liver transplantation or hepatic surgery. We have investigated the effects of cannabidiol (CBD), the nonpsychotropic constituent of marijuana, in a mouse model of hepatic I/R injury. I/R triggered time-dependent increases/changes in markers of liver injury (serum transaminases), hepatic oxidative/nitrative stress (4-hydroxy-2-nonenal, nitrotyrosine content/staining, and gp91phox and inducible nitric oxide synthase mRNA), mitochondrial dysfunction (decreased complex I activity), inflammation (tumor necrosis factor α (TNF-α), cyclooxygenase 2, macrophage inflammatory protein-1α/2, intercellular adhesion molecule 1 mRNA levels; tissue neutrophil infiltration; nuclear factor κB (NF-κB) activation), stress signaling (p38MAPK and JNK), and cell death (DNA fragmentation, PARP activity, and TUNEL). CBD significantly reduced the extent of liver inflammation, oxidative/nitrative stress, and cell death and also attenuated the bacterial endotoxin-triggered NF-κB activation and TNF-α production in isolated Kupffer cells, likewise the adhesion molecule expression in primary human liver sinusoidal endothelial cells stimulated with TNF-α and attachment of human neutrophils to the activated endothelium. These protective effects were preserved in CB(2) knockout mice and were not prevented by CB(1/2) antagonists in vitro. Thus, CBD may represent a novel, protective strategy against I/R injury by attenuating key inflammatory pathways and oxidative/nitrative tissue injury, independent of classical CB(1/2) receptors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neuronal death occurs naturally in the development of the vertebrate central nervous system, deleting large numbers of neurons at the time when afferent and efferent connections are being formed. It is these that regulate it, by means of anterograde and retrograde survival signals that depend on trophic molecules and electrical activity. Possible roles include the regulation of neuronal numbers (numerical matching) and the elimination of axonal targeting errors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has not been well established whether the mechanisms participating in pH regulation in the anoxic-reoxygenated developing myocardium resemble those operating in the adult. We have specially examined the importance of Na+/H+ exchange (NHE) and HCO3-dependent transports in cardiac activity after changes in extracellular pH (pHo). Spontaneously contracting hearts isolated from 4-day-old chick embryos were submitted to single or repeated anoxia (1 min) followed by reoxygenation (10 min). The chronotropic, dromotropic and inotropic responses of the hearts were determined in standard HCO3- buffer at pHo 7.4 and at pHo 6.5 (hypercapnic acidosis). In distinct experiments, acidotic anoxia preceded reoxygenation at pHo 7.4. NHE was blocked with amiloride derivative HMA (1 micro mol/l) and HCO3-dependent transports were inactivated by replacement of HCO3 or blockade with stilbene derivative DIDS (100 micro mol/l). Anoxia caused transient tachycardia, depressed mechanical function and induced contracture. Reoxygenation temporarily provoked cardiac arrest, atrio-ventricular (AV) block, arrhythmias and depression of contractility. Addition of DIDS or substitution of HCO3 at pHo 7.4 had the same effects as acidosis per se, i.e. shortened contractile activity and increased incidence of arrhythmias during anoxia, prolonged cardioplegia and provoked arrhythmias at reoxygenation. Under anoxia at pHo 6.5/reoxygenation at pHo 7.4, cardioplegia, AV block and arrhythmias were all markedly prolonged. Interestingly, in the latter protocol, DIDS suppressed AV block and arrhythmias during reoxygenation, whereas HMA had no effect. Thus, intracellular pH regulation in the anoxic-reoxygenated embryonic heart appears to depend predominantly on HCO3 availability and transport. Furthermore, pharmacological inhibition of anion transport can protect against reoxygenation-induced dysfunction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SUMMARYAim: The embryonic/fetal heart is highly sensitive to oxygenation level and a transient uteroplacental hypoperfusion can lead to oxyradicals overproduction. Information about the molecular mechanisms underlying ischemia-reperfusion (I-R) injury in the developing heart is lacking. The Janus Kinase 2 / Signal Transducer and Activator of Transcription 3 (JAK2/STAT3) pathway, required for cardiogenesis and involved in protection of the adult heart against I-R, could also play a key role in the response of the fetal myocardium to transient oxygen deprivation. The aim of the study was to characterize the involvement of JAK2/STAT3 pathway and its interaction with other signalling pathways in the developing heart transiently submitted to anoxia. Furthermore, the response of the embryonic heart to an exogenous oxidant stress (H2O2) in comparison to reoxygenation-induced endogenous oxyradicals has been investigated.Methods: Hearts isolated from 4-day-old chick embryos were submitted to anoxia (30min) and reoxygenation (80min) with or without the antioxidant MPG, the JAK2/STAT3 inhibitor AG490 or exposed to H202 (50|iM-lmM). The time course of phosphorylation of STAT3atyr0Sine7 and Reperfusion Injury Salvage Kinase (RISK) proteins (PI3K, Akt, GSK3B, Glycogen Synthase and ERK2) was determined in homogenate" and in enriched nuclear and cytoplasmic fractions. The STAT3 DNA-binding was determined by EMSA and the expression of STAT3 specific target genes by RT-PCR. The chrono-, dromo- and inotropic disturbances were also investigated by ECG and mechanical recordings.Results: Phosphorylation of STATSaP (P-Tyr STAT3a) was increased by reoxygenation and reduced by MPG or AG490. STAT3 and GSK36 were detected both in nuclear and cytoplasmic fractions while PI3K, Akt, GS and ERK2 were restricted to cytoplasm. Reoxygenation led to nuclear accumulation of STAT3 but unexpectedly without DNA- binding. AG490 decreased the reoxygenation-induced phosphorylation of STABa^, Akt, GS and ERK2 and phosphorylation/inhibition of GSK3B in the nucleus, exclusively. Inhibition of JAK2/STAT3 delayed recovery of atrial rate, worsened RR. variability and prolonged arrhythmias compared to control hearts. Cardiac activity was altered only at concentrations >500μΜ of H2O2. Moreover, ImM of H2O2 suppressed atrial activity in 45% of the hearts, atrioventricular conduction in 66% and augmented P-Tyr STAT3awhich led to an increase in the DNA-binding but no change in the expression of three STAT3 specific target genes (iNOS, MnSOD, Cox-2).Conclusion: In the developing heart, besides its nuclear translocation without transcriptional activity, ROS-activated STAT3a can rapidly interact with RISK proteins present in nucleus and cytoplasm and reduce the anoxia-reoxygenation-induced arrhythmias. Moreover, the embryonic heart is highly resistant to H2O2 and the atrial region is the less affected. The role of JAK2/STAT3 in the response to reoxygenation-induced oxyradicals is different from the response to strong exogenous oxidant stress where STAT3 DNA-binding activity is increased. Such findings provide a first step in understanding the modulation of signalling cascades in the fetal heart submitted to transient intrauterine oxygen deprivation.RESUMEIntroduction: Le coeur embryonnaire et foetal est très sensible au manque d'oxygène et une hypoperfusion utéroplacentaire transitoire peut conduire à une surproduction d'espèces radicalaires (ROS). Dans le coeur en développement les mécanismes moléculaires impliqués en situation d'ischémie-reperfusion (I-R) ne sont pas connus. La voie de signalisation JAK2/STAT3 (Janus Kinase 2 / Signal Transducer and Activator of Transcription 3), impliquée aussi bien dans la cardiogenèse précoce que dans la protection du coeur adulte contre l'I-R, pourrait jouer un rôle clé dans la réponse du myocarde foetal à un déficit en oxygène. Cette étude a permis d'étudier le rôle de la voie JAK2/STAT3 et son interaction avec d'autres voies de signalisation dans un modèle de coeur embryonnaire soumis à un épisode anoxique. En outre, les effets du stress oxydant endogène provoqué par la réoxygénation ont été comparés à ceux du stress oxydatif exogène induit par du peroxyde d'hydrogène (H2O2).Méthodes: Des coeurs isolés d'embryons de poulet âgés de 4 jours ont été soumis à une anoxie (30min) suivie d'une réoxygénation (80min) en présence ou non de l'antioxydant MPG et de l'inhibiteur de JAK2/STAT3 AG490 ou exposés à de 1Ή202 (50μΜ-1πιΜ). L'évolution temporelle de la phosphorylation de 8ΤΑΤ3α*ΓΟδίη6705 (P-Tyr STAT3a) et celle de la phosphorylation des protéines de la voie RISK (Reperfusion Injury Salvage Kinase: PI3K, Akt, GSK3B, glycogène synthase GS et ERK2) ont été déterminés dans l'homogénat et dans les fractions nucléaire et cytopiasmique du myocarde. La liaison de STAT3 à l'ADN a été déterminée par EMSA et l'expression de gènes cibles de STAT3 (iNOS, MnSOD, Cox2) par RT-PCR. Les effets chrono-, dromo- et inotropes ont été déterminés par les enregistrements de l'ECG et de l'activité contractile ventriculaire.Résultats: STAT3 et GSK3B étaient présents dans les fractions nucléaire et cytopiasmique tandis que PI3K, Akt, GS et ERK2 n'étaient détectées que dans la fraction cytopiasmique. L'augmentation de P-Tyr STAT3a provoquée par la réoxygénation était significativement réduite par le MPG ou PAG490. La réoxygénation entraînait l'accumulation nucléaire de STAT3, mais étonnamment sans liaison avec l'ADN. A la réoxygénation TAG490 diminuait la phosphorylation d'Akt, GS et ERK2 ainsi que celle de GSK36 mais exclusivement dans la fraction nucléaire. L'inhibition de JAK2/STAT3 retardait également la récupération du rythme cardiaque et prolongeait la durée des arythmies. L'activité cardiaque n'était perturbée par de ΓΗ2Ο2 qu'à des concentrations >500μΜ. A ImM, ΓΗ2Ο2 supprimait l'activité auriculaire dans 45% des coeurs et la conduction auriculo-ventriculaire dans 66% et augmentait la formation de P-Tyr STAT3a et sa liaison à l'ADN sans modifier l'expression des gènes cibles.Conclusion: Les ROS produits par l'anoxie-réoxygénation activent STAT3a qui subit une translocation dans le noyau sans se lier à l'ADN et interagit rapidement avec des protéines de la voie RISK dans les compartiments nucléaire et cytopiasmique du coeur embryonnaire. Ce dernier, en particulier au niveau des oreillettes, se révèle très résistant au puissant stress oxydatif de l'H202 qui se différencie du stress lié à la réoxygénation en favorisant la liaison de STAT3 à l'ADN. Ces résultats originaux permettent une meilleure compréhension des mécanismes qui peuvent améliorer la récupération du coeur en développement après un épisode hypoxique intra-utérin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The analysis of the 220,540 births and 2152 perinatal deaths recorded in Switzerland between 1979 and 1981 showed a variation of perinatal mortality rates (PMR) according to the hour of birth. The PMR for babies born between 4 pm and 2 am was 12 per 1000, contrasting with a figure of 8.4 per 1000 for babies born between 2 am and 4 pm. This pattern, which was fairly constant throughout the week, was characterised by a slow and steady increase from the very early morning, reaching a maximum in the late evening. There was also an hour-to-hour variation in the proportion of babies born weighing less than 2500 g, with a maximum in the evening and a less pronounced peak in the morning: the mortality rates by birthweight were raised only in the evening. Since the availability of hospital staff and equipment also follows a circadian rhythm, the variation in PMR may be related to a circadian rhythm of quality of care or possibly to chronobiological or selection factors.