234 resultados para benznidazole resistance
Resumo:
Transmission of drug-resistant pathogens presents an almost-universal challenge for fighting infectious diseases. Transmitted drug resistance mutations (TDRM) can persist in the absence of drugs for considerable time. It is generally believed that differential TDRM-persistence is caused, at least partially, by variations in TDRM-fitness-costs. However, in vivo epidemiological evidence for the impact of fitness costs on TDRM-persistence is rare. Here, we studied the persistence of TDRM in HIV-1 using longitudinally-sampled nucleotide sequences from the Swiss-HIV-Cohort-Study (SHCS). All treatment-naïve individuals with TDRM at baseline were included. Persistence of TDRM was quantified via reversion rates (RR) determined with interval-censored survival models. Fitness costs of TDRM were estimated in the genetic background in which they occurred using a previously published and validated machine-learning algorithm (based on in vitro replicative capacities) and were included in the survival models as explanatory variables. In 857 sequential samples from 168 treatment-naïve patients, 17 TDRM were analyzed. RR varied substantially and ranged from 174.0/100-person-years;CI=[51.4, 588.8] (for 184V) to 2.7/100-person-years;[0.7, 10.9] (for 215D). RR increased significantly with fitness cost (increase by 1.6[1.3,2.0] per standard deviation of fitness costs). When subdividing fitness costs into the average fitness cost of a given mutation and the deviation from the average fitness cost of a mutation in a given genetic background, we found that both components were significantly associated with reversion-rates. Our results show that the substantial variations of TDRM persistence in the absence of drugs are associated with fitness-cost differences both among mutations and among different genetic backgrounds for the same mutation.
Resumo:
We studied whether PPARβ/δ deficiency modifies the effects of high fructose intake (30% fructose in drinking water) on glucose tolerance and adipose tissue dysfunction, focusing on the CD36-dependent pathway that enhances adipose tissue inflammation and impairs insulin signaling. Fructose intake for 8weeks significantly increased body and liver weight, and hepatic triglyceride accumulation in PPARβ/δ-deficient mice but not in wild-type mice. Feeding PPARβ/δ-deficient mice with fructose exacerbated glucose intolerance and led to macrophage infiltration, inflammation, enhanced mRNA and protein levels of CD36, and activation of the JNK pathway in white adipose tissue compared to those of water-fed PPARβ/δ-deficient mice. Cultured adipocytes exposed to fructose also exhibited increased CD36 protein levels and this increase was prevented by the PPARβ/δ activator GW501516. Interestingly, the levels of the nuclear factor E2-related factor 2 (Nrf2), a transcription factor reported to up-regulate Cd36 expression and to impair insulin signaling, were increased in fructose-exposed adipocytes whereas co-incubation with GW501516 abolished this increase. In agreement with Nrf2 playing a role in the fructose-induced CD36 protein level increases, the Nrf2 inhibitor trigonelline prevented the increase and the reduction in insulin-stimulated AKT phosphorylation caused by fructose in adipocytes. Protein levels of the well-known Nrf2 target gene NAD(P)H: quinone oxidoreductase 1 (Nqo1) were increased in water-fed PPARβ/δ-null mice, suggesting that PPARβ/δ deficiency increases Nrf2 activity; and this increase was exacerbated in fructose-fed PPARβ/δ-deficient mice. These findings indicate that the combination of high fructose intake and PPARβ/δ deficiency increases CD36 protein levels via Nrf2, a process that promotes chronic inflammation and insulin resistance in adipose tissue.
Resumo:
MAF1 is a global repressor of RNA polymerase III transcription that regulates the expression of highly abundant noncoding RNAs in response to nutrient availability and cellular stress. Thus, MAF1 function is thought to be important for metabolic economy. Here we show that a whole-body knockout of Maf1 in mice confers resistance to diet-induced obesity and nonalcoholic fatty liver disease by reducing food intake and increasing metabolic inefficiency. Energy expenditure in Maf1(-/-) mice is increased by several mechanisms. Precursor tRNA synthesis was increased in multiple tissues without significant effects on mature tRNA levels, implying increased turnover in a futile tRNA cycle. Elevated futile cycling of hepatic lipids was also observed. Metabolite profiling of the liver and skeletal muscle revealed elevated levels of many amino acids and spermidine, which links the induction of autophagy in Maf1(-/-) mice with their extended life span. The increase in spermidine was accompanied by reduced levels of nicotinamide N-methyltransferase, which promotes polyamine synthesis, enables nicotinamide salvage to regenerate NAD(+), and is associated with obesity resistance. Consistent with this, NAD(+) levels were increased in muscle. The importance of MAF1 for metabolic economy reveals the potential for MAF1 modulators to protect against obesity and its harmful consequences.
Resumo:
Current standard treatments for metastatic colorectal cancer (CRC) are based on combination regimens with one of the two chemotherapeutic drugs, irinotecan or oxaliplatin. However, drug resistance frequently limits the clinical efficacy of these therapies. In order to gain new insights into mechanisms associated with chemoresistance, and departing from three distinct CRC cell models, we generated a panel of human colorectal cancer cell lines with acquired resistance to either oxaliplatin or irinotecan. We characterized the resistant cell line variants with regards to their drug resistance profile and transcriptome, and matched our results with datasets generated from relevant clinical material to derive putative resistance biomarkers. We found that the chemoresistant cell line variants had distinctive irinotecan- or oxaliplatin-specific resistance profiles, with non-reciprocal cross-resistance. Furthermore, we could identify several new, as well as some previously described, drug resistance-associated genes for each resistant cell line variant. Each chemoresistant cell line variant acquired a unique set of changes that may represent distinct functional subtypes of chemotherapy resistance. In addition, and given the potential implications for selection of subsequent treatment, we also performed an exploratory analysis, in relevant patient cohorts, of the predictive value of each of the specific genes identified in our cellular models.
Resumo:
To investigate azole resistance in clinical Aspergillus isolates, we conducted prospective multicenter international surveillance. A total of 3,788 Aspergillus isolates were screened in 22 centers from 19 countries. Azole-resistant A. fumigatus was more frequently found (3.2% prevalence) than previously acknowledged, causing resistant invasive and noninvasive aspergillosis and severely compromising clinical use of azoles.
Resumo:
The hypothesis that constitutive and inducible plant resistance against herbivores should trade-off because they use the same resources and impose costs to plant fitness has been postulated for a long time. Negative correlations between modes of deployment of resistance and defences have been observed across and within species in common garden experiments. It was therefore tested whether that pattern of resistance across genotypes follows a similar variation in patterns of gene expression and chemical defence production. Using the genetically tractable model Arabidopsis thaliana and different modes of induction, including the generalist herbivore Spodoptera littoralis, the specialist herbivore Pieris brassicae, and jasmonate application, constitutive and inducibility of resistance was measured across seven A. thaliana accessions that were previously selected based on constitutive levels of defence gene expression. According to theory, it was found that modes of resistance traded-off among accessions, particularly against S. littoralis, in which accessions investing in high constitutive resistance did not increase it substantially after attack and vice-versa. Accordingly, the average expression of eight genes involved in glucosinolate production negatively predicted larval growth across the seven accessions. Glucosinolate production and genes related to defence induction on healthy and herbivore-damaged plants were measured next. Surprisingly, only a partial correlation between glucosinolate production, gene expression, and the herbivore resistance results was found. These results suggest that the defence outcome of plants against herbivores goes beyond individual molecules or genes but stands on a complex network of interactions.
4B.05: Plasma Lasma copeptin is associated with insulin resistance in a Swiss population-based study
Resumo:
OBJECTIVE: Previous studies suggest that arginine vasopressin may have a role in metabolic syndrome (MetS) and diabetes by altering liver glycogenolysis, insulin, and glucagon secretion and pituitary ACTH release. We tested whether plasma copeptin, the stable C-terminal fragment of arginine vasopressin prohormone, was associated with insulin resistance and MetS in a Swiss population-based study. DESIGN AND METHOD: We analyzed data from the population-based Swiss Kidney Project on Genes in Hypertension. Copeptin was assessed by an immunoluminometric assay. Insulin resistance was derived from the HOMA model and calculated as follows: (FPI x FPG)/22.5, where FPI is fasting plasma insulin concentration (mU/L) and FPG fasting plasma glucose (mmol/L). Subjects were classified as having the MetS according to the National Cholesterol Education Program Adult Treatment Panel III criteria. Mixed multivariate linear regression models were built to explore the association of insulin resistance with copeptin. In addition, multivariate logistic regression models were built to explore the association between MetS and copeptin. In the two analyses, adjustment was done for age, gender, center, tobacco and alcohol consumption, socioeconomic status, physical activity, intake of fruits and vegetables and 24 h urine flow rate. Copeptin was log-transformed for the analyses. RESULTS: Among the 1,089 subjects included in this analysis, 47% were male. Mean (SD) age and body mass index were 47.4 (17.6) years 25.0 (4.5) kg/m2. The prevalence of MetS was 10.5%. HOMA-IR was higher in men (median 1.3, IQR 0.7-2.1) than in women (median 1.0, IQR 0.5-1.6,P < 0.0001). Plasma copeptin was higher in men (median 5.2, IQR 3.7-7.8 pmol/L) than in women (median 3.0, IQR 2.2-4.3 pmol/L), P < 0.0001. HOMA-IR was positively associated with log-copeptin after full adjustment (β (95% CI) 0.19 (0.09-0.29), P < 0.001). MetS was not associated with copeptin after full adjustment (P = 0.92). CONCLUSIONS: Insulin resistance, but not MetS, was associated with higher copeptin levels. Further studies should examine whether modifying pharmacologically the arginine vasopressin system might improve insulin resistance, thereby providing insight into the causal nature of this association.
Resumo:
BACKGROUND: Low vitamin D status has been associated with an increased risk of developing type 2 diabetes and insulin resistance (IR), although this has been recently questioned. OBJECTIVE: We examined the association between serum vitamin D metabolites and incident IR. METHODS: This was a prospective, population-based study derived from the CoLaus (Cohorte Lausannoise) study including 3856 participants (aged 51.2 ± 10.4 y; 2217 women) free from diabetes or IR at baseline. IR was defined as a homeostasis model assessment (HOMA) index >2.6. Fasting plasma insulin and glucose were measured at baseline and at follow-up to calculate the HOMA index. The association of vitamin D metabolites with incident IR was analyzed by logistic regression, and the results were expressed for each independent variable as ORs and 95% CIs. RESULTS: During the 5.5-y follow-up, 649 (16.9%) incident cases of IR were identified. Participants who developed IR had lower baseline serum concentrations of 25-hydroxyvitamin D3 [25(OH)D3 (25-hydroxycholecalciferol); 45.9 ± 22.8 vs. 49.9 ± 22.6 nmol/L; P < 0.001], total 25(OH)D3 (25(OH)D3 + epi-25-hydroxyvitamin D3 [3-epi-25(OH)D3]; 49.1 ± 24.3 vs. 53.3 ± 24.1 nmol/L; P < 0.001), and 3-epi-25(OH)D3 (4.2 ± 2.9 vs. 4.3 ± 2.5 nmol/L; P = 0.01) but a higher 3-epi- to total 25(OH)D3 ratio (0.09 ± 0.05 vs. 0.08 ± 0.04; P = 0.007). Multivariable analysis adjusting for month of sampling, age, and sex showed an inverse association between 25(OH)D3 and the likelihood of developing IR [ORs (95% CIs): 0.86 (0.68, 1.09), 0.60 (0.46, 0.78), and 0.57 (0.43, 0.75) for the second, third, and fourth quartiles compared with the first 25(OH)D3 quartile; P-trend < 0.001]. Similar associations were found between total 25(OH)D3 and incident IR. There was no significant association between 3-epi-25(OH)D3 and IR, yet a positive association was observed between the 3-epi- to total 25(OH)D3 ratio and incident IR. Further adjustment for body mass index, sedentary status, and smoking attenuated the association between 25(OH)D3, total 25(OH)D3, and the 3-epi- to total 25(OH)D3 ratio and the likelihood of developing IR. CONCLUSION: In the CoLaus study in healthy adults, the risk of incident IR is not associated with serum concentrations of 25(OH)D3 and total 25(OH)D3.
Resumo:
Antifungal therapy is a central component of patient management for acute and chronic mycoses. Yet, treatment choices are restricted because of the sparse number of antifungal drug classes. Clinical management of fungal diseases is further compromised by the emergence of antifungal drug resistance, which eliminates available drug classes as treatment options. Once considered a rare occurrence, antifungal drug resistance is on the rise in many high-risk medical centers. Most concerning is the evolution of multidrug- resistant organisms refractory to several different classes of antifungal agents, especially among common Candida species. The mechanisms responsible are mostly shared by both resistant strains displaying inherently reduced susceptibility and those acquiring resistance during therapy. The molecular mechanisms include altered drug affinity and target abundance, reduced intracellular drug levels caused by efflux pumps, and formation of biofilms. New insights into genetic factors regulating these mechanisms, as well as cellular factors important for stress adaptation, provide a foundation to better understand the emergence of antifungal drug resistance.
Resumo:
Among existing fungal pathogens, Candida glabrata is outstanding in its capacity to rapidly develop resistance to currently used antifungal agents. Resistance to the class of azoles, which are still widely used agents, varies in proportion (from 5 to 20%) depending on geographical area. Moreover, resistance to the class of echinocandins, which was introduced in the late 1990s, is rising in several institutions. The recent emergence of isolates with acquired resistance to both classes of agents is a major concern since alternative therapeutic options are scarce. Although considered less pathogenic than C. albicans, C. glabrata has still evolved specific virulence traits enabling its survival and propagation in colonized and infected hosts. Development of drug resistance is usually associated with fitness costs, and this notion is documented across several microbial species. Interestingly, azole resistance in C. glabrata has revealed the opposite. Experimental models of infection showed enhanced virulence of azole-resistant isolates. Moreover, azole resistance could be associated with specific changes in adherence properties to epithelial cells or innate immunity cells (macrophages), both of which contribute to virulence changes. Here we will summarize the current knowledge on C. glabrata drug resistance and also discuss the consequences of drug resistance acquisition on the balance between C. glabrata and its hosts.
Resumo:
BACKGROUND: Transmitted human immunodeficiency virus type 1 (HIV) drug resistance (TDR) mutations are transmitted from nonresponding patients (defined as patients with no initial response to treatment and those with an initial response for whom treatment later failed) or from patients who are naive to treatment. Although the prevalence of drug resistance in patients who are not responding to treatment has declined in developed countries, the prevalence of TDR mutations has not. Mechanisms causing this paradox are poorly explored. METHODS: We included recently infected, treatment-naive patients with genotypic resistance tests performed ≤1 year after infection and before 2013. Potential risk factors for TDR mutations were analyzed using logistic regression. The association between the prevalence of TDR mutations and population viral load (PVL) among treated patients during 1997-2011 was estimated with Poisson regression for all TDR mutations and individually for the most frequent resistance mutations against each drug class (ie, M184V/L90M/K103N). RESULTS: We included 2421 recently infected, treatment-naive patients and 5399 patients with no response to treatment. The prevalence of TDR mutations fluctuated considerably over time. Two opposing developments could explain these fluctuations: generally continuous increases in the prevalence of TDR mutations (odds ratio, 1.13; P = .010), punctuated by sharp decreases in the prevalence when new drug classes were introduced. Overall, the prevalence of TDR mutations increased with decreasing PVL (rate ratio [RR], 0.91 per 1000 decrease in PVL; P = .033). Additionally, we observed that the transmitted high-fitness-cost mutation M184V was positively associated with the PVL of nonresponding patients carrying M184V (RR, 1.50 per 100 increase in PVL; P < .001). Such association was absent for K103N (RR, 1.00 per 100 increase in PVL; P = .99) and negative for L90M (RR, 0.75 per 100 increase in PVL; P = .022). CONCLUSIONS: Transmission of antiretroviral drug resistance is temporarily reduced by the introduction of new drug classes and driven by nonresponding and treatment-naive patients. These findings suggest a continuous need for new drugs, early detection/treatment of HIV-1 infection.
Resumo:
OBJECTIVES: The objective of this study was to characterize the underlying molecular mechanisms in consecutive clinical Candida albicans isolates from a single patient displaying stepwise-acquired multidrug resistance. METHODS: Nine clinical isolates (P-1 to P-9) were susceptibility tested by EUCAST EDef 7.2 and Etest. P-4, P-5, P-7, P-8 and P-9 were available for further studies. Relatedness was evaluated by MLST. Additional genes were analysed by sequencing (including FKS1, ERG11, ERG2 and TAC1) and gene expression by quantitative PCR (CDR1, CDR2 and ERG11). UV-spectrophotometry and GC-MS were used for sterol analyses. In vivo virulence was determined in the insect model Galleria mellonella and evaluated by log-rank Mantel-Cox tests. RESULTS: P-1 + P-2 were susceptible, P-3 + P-4 fluconazole resistant, P-5 pan-azole resistant, P-6 + P-7 pan-azole and echinocandin resistant and P-8 + P-9 MDR. MLST supported genetic relatedness among clinical isolates. P-4 harboured four changes in Erg11 (E266D, G307S, G450E and V488I), increased expression of ERG11 and CDR2 and a change in Tac1 (R688Q). P-5, P-7, P-8 and P-9 had an additional change in Erg11 (A61E), increased expression of CDR1, CDR2 and ERG11 (except for P-7) and a different amino acid change in Tac1 (R673L). Echinocandin-resistant isolates harboured the Fks1 S645P alteration. Polyene-resistant P-8 + P-9 lacked ergosterol and harboured a frameshift mutation in ERG2 (F105SfsX23). Virulence was attenuated (but equivalent) in the clinical isolates, but higher than in the azole- and echinocandin-resistant unrelated control strain. CONCLUSIONS: C. albicans demonstrates a diverse capacity to adapt to antifungal exposure. Potentially novel resistance-inducing mutations in TAC1, ERG11 and ERG2 require independent validation.