271 resultados para Embedded Cell Model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Anergic T cells display a marked decrease in their ability to produce IL-2 and to proliferate in the presence of an appropriate antigenic signal. Two nonmutually exclusive classes of models have been proposed to explain the persistence of T cell anergy in vivo. While some reports indicate that anergic T cells have intrinsic defects in signaling pathways or transcriptional activities, other studies suggest that anergy is maintained by environmental "suppressor" factors such as cytokines or Abs. To distinguish between these conflicting hypotheses, we employed the well-characterized bacterial superantigen model system to evaluate in vivo the ability of a trace population of adoptively transferred naive or anergized T cells to proliferate in a naive vs anergic environment upon subsequent challenge. Our data clearly demonstrate that bacterial superantigen-induced T cell anergy is cell autonomous and independent of environmental factors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: The exact role of individual T cell-subsets in the development of rejection is not clearly defined. Given their distinct phenotypes, effector functions and trafficking patterns, naïve (CD45RBhiCD44lo) and memory (CD45RBloCD44hi) T cells may play distinct roles in anti-donor immunity after transplantation. Furthermore, only the CD4+CD45RBlo population contains CD4+CD25+ T cells, a subset with suppressive functions playing a major role in the maintenance of peripheral tolerance. The aim of this work was to study the contribution of these individual subsets in alloresponses via the direct and indirect pathways using a murine experimental model. Methods and materials: Purified naïve or memory CD4+ T cells were adoptively transferred into lymphopenic mice undergoing a skin allograft. Donor to recipient MHC combinations were chosen in order to study the direct and the indirect pathways of allorecognition separately. Graft survival and in vivo expansion, effector function and trafficking of the transferred T cells was assessed at different time points after transplantation. Results: We found that the cross-reactive CD4+CD45RBlo memory T-cell pool was heterogeneous and contained cells with regulatory potentials, both in the CD4+CD25+ and CD4+CD25-populations. CD4+ T cells capable of inducing strong primary alloreactive responses in vitro and rejection of a first allograft in vivo were mainly contained within the CD45RBhi naïve CD4+ T-cell compartment. CD4+CD45RBlo T cells proliferated less abundantly to allogeneic stimulation than their naïve counterparts both in vitro and in vivo, and allowed prolonged allograft survival even after the depletion of the CD4+CD25+ subset. Interestingly, CD4+CD25-CD45RBlo T cells were capable of prolonging allograft survival, mainly when the indirect pathway was the only mechanism of allorecognition. The indirect pathway response, which was shown to drive true chronic rejection and contribute to chronic allograft dysfunction, was predominantly mediated by naïve CD4+ T cells. Conclusion: This work provides new insights into the mechanisms that drive allograft rejection and should help develop new clinical immunosuppressive protocols. In particular, our results highlight the importance of selectively targeting individual T-cell subsets to prevent graft rejection but at the same time maintain immune protective responses to common pathogens.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

T cell receptor (TCR-CD3) triggering involves both receptor clustering and conformational changes at the cytoplasmic tails of the CD3 subunits. The mechanism by which TCRalphabeta ligand binding confers conformational changes to CD3 is unknown. By using well-defined ligands, we showed that induction of the conformational change requires both multivalent engagement and the mobility restriction of the TCR-CD3 imposed by the plasma membrane. The conformational change is elicited by cooperative rearrangements of two TCR-CD3 complexes and does not require accompanying changes in the structure of the TCRalphabeta ectodomains. This conformational change at CD3 reverts upon ligand dissociation and is required for T cell activation. Thus, our permissive geometry model provides a molecular mechanism that rationalizes how the information of ligand binding to TCRalphabeta is transmitted to the CD3 subunits and to the intracellular signaling machinery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Summary The mechanisms regulating the protective immune T-cell responses generated against the persistent Epstein-Barr virus (EBV) and Cytomegaloviru_s (CNIV) remain poorly understood. We analyzed the dynamics of cellular differentiation and T-cell receptor (TCR) clonotype selection of EBV- and CMV-specific T-cells in healthy adults and melanoma patients. While these responses could be subdivided into four T lymphocyte populations, théir proportions varied between EBV and CMV specific responses. Phenotypic and TCR clonotypic analyses supported a linear model of differentiation from the early-differentiated (EM/CD28pos) subset to the late-differentiatdc (EMRA/CD28neg) subset. In-depth clonal composition analyses revealed TCR repertoires, which were highly restricted for CMV- and relatively diverse for EBV-specific cells. Virtually all virus-specific clonotypes identified in the EMRA/CD28neg subset were also found within the pool of less differentiated "memory" cells. However, striking differences in the patterns of dominance were observed among these subsets, as some clonotypes were selected with differentiation, while others were not. Latedifferentiated CMV-specific clonotypes were mostly characterized by TCRs with lower dependency on CD8 co-receptor interaction. Yet all clonotypes displayed similar functional avidities, suggesting a compensatory role of CD8 in the clonotypes of lower TCR avidity. Importantly, clonotype selection and composition of each virus-specific subset upon differentiation was highly preserved over time, with the presence of the same dominant clonotypes at specific differentiation stages within a period of four years. This work was extended to the study of EBV-specific CD8 T-cell responses in melanoma patients undergoing transient lymphodepletion, followed by adoptive cell transfer (ACT) and immune reconstitution for thè treatment of their tumors. Following treatment regimen, we first observed an increase in the proportion of virus-specific T-cells in 3 out of 5 patients, accompanied by a more differentiated phenotype (EMRA/CD28neg), compared to specific cells of healthy individuals. Yet, similarly to healthy donors, clonotype selection and composition of virus-specific T-cells varied along the pathway of cellular differentiation, with some clonotypes being selected with differentiation, while others were not. Intriguingly, no novel clonotypes emerged following transient immuno-suppression and homeostatic proliferation, finding which was subsequently explained by the absence of EBV reactivation. The distribution of each clonotype within early- and late-differentiated T-cell subsets in 4 out 5 patients was highly stable over time, with those clonotypes initially found before the start of treatment that were again present at specific differentiation stages after transient lymphodepletion and ACT. These findings uncover novel features of the highly sophisticated control of steady state protective T-cell immune responses against persistent herpesviruses in healthy adults. Furthermore they reveal the striking stability of these responses in terms of clonotype selection and composition with T-cell differentiation even in situations where the immune system has been. challenged. Résumé : Les mécanismes qui régulent les réponses immunitaires de type protectrices, générées contre les virus chroniquement persistants tels que l'Epstein-Barr (EBV) ou le Cytomegalo (CMV) restent largement inconnus. Nous avons analysé la différenciation des lymphocytes T spécifiques pour ces virus, ainsi que la composition des clonotypes T (par leur récepteur T) chez les donneurs sains. Les réponses immunes peuvent être classifiées en quatre souspopulations majeures de lymphocytes T, cependant, leur proportion varie entre les réponses spécifiques contre EBV ou CMV. Ces analyses soutiennent le modèle linéaire de différenciation, à partir de la population non différenciée (EM/CD28pos) vers la population plus différenciée (ENIIZA/CD28neg). De plus, nos données sur la composition clonale de ces cellules T spécifiques ont révélé des répertoires TCR restreints, pour la réponse anti-CMV, et relativement diversifiés contre EBV. Tous les clonotypes spécifiques de ces virus identifiés dans la sous-population différenciée EMRA/CD28neg, ont également été retrouvés dans la population de cellules "mémoires". Toutefois, de fortes différences ont été observées dans les schémas de domination de ces sous-populations, en effet, certains clonotypes étaient sélectionnés avec la différenciation, alors que d'autres ne l'étaient pas. Nous avons également démontré que ces clonotypes différenciés et spécifiques pour le CMV sont caractérisés par des TCRs à faible dépendance en regard de la coopération du corécepteur CD8. Néanmoins, tous les clonotypes affichent une avidité fonctionnelle similaire, suggérant un rôle compensatoire du CD8, dans le cas des clonotypes avec une faible avidité du TCR En définitive, la composition et la sélection des clonotypes spécifiques pour chaque virus et pour chaque sous-population suit un schéma de différenciation hautement conservé au cours du temps, avec la présence de ces mêmes clonotypes au même stade de différenciation sur une période de quatre ans. Ce travail a été étendu à l'étude des réponses T CD8+ spécifiques pour le virus EBV chez les patients atteints de mélanome et recevant dans le cadre du traitement de leurs tumeurs une lymphodéplétion transitoire, suivie d'un transfert adoptif de cellules et d'une reconstitution immunitaire. Au cours de cette thérapie, nous avons en premier lieu observé pour 3 des 5 patients une augmentation de la proportion de cellules T spécifiques pour le virus, accompagné d'un phénotype plus différencié (EMRA/CD28neg), et ceci comparativement à des cellules spécifiques d'individus sains. Pourtant, comme nous l'avons observé chez les donneurs sains, la sélection et la composition des clonotypes T spécifiques varient tout au long de la différenciation cellulaire, avec certains clonotypes sélectionnés et d'autres qui ne le sont pas. Étonnamment, aucun nouveau clonotype n'a émergé après l'immuno-suppression transitoire et la prolifération homéostatique. Cette observation trouve son explication par une absence de réactivation du virus EBV chez ces patients, et ce malgré leur traitement. De plus, la distribution de chaque clonotype parmi ces sous-populations non-différenciées et différenciées reste stable au cours du traitement. Ainsi, les mêmes clonotypes initialement identifiés avant le début du traitement sont présents aux mêmes stades de différenciation après la lymphodéplétion et la prolifération homéostatique. Ces résultats ont permis d'identifier de nouveaux mécanismes impliqués dans la régulation hautement «sophistiquée » des réponses immunitaires T contre les virus persistants EBV et CMV chez les donneurs sains. En particulier, ils révèlent la grande stabilité de ces réponses en termes de sélection et de composition des clonotypes avec la différenciation cellulaire, et ce dans les situations chroniques, ainsi que dans les situations dans lesquelles le système immunitaire a été profondément perturbé.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Congenital malformations or injuries of the urethra can be treated using existing autologous tissue, but these procedures are sometimes associated with severe complications. Therefore, tissue engineering may be advantageous for generating urethral grafts. We evaluated engineered high-density collagen gel tubes as urethral grafts in 16 male New Zealand white rabbits. The constructs were either acellular or seeded with autologous smooth muscle cells, isolated from an open bladder biopsy. After the formation of a urethral defect by excision, the tissue-engineered grafts were interposed between the remaining urethral ends. No catheter was placed postoperatively. The animals were evaluated at 1 or 3 months by contrast urethrography and histological examination. Comparing the graft caliber to the control urethra at 3 months, a larger caliber was found in the cell-seeded grafts (96.6% of the normal caliber) than in the acellular grafts (42.3%). Histology of acellular and cell-seeded grafts did not show any sign of inflammation, and spontaneous regrowth of urothelium could be demonstrated in all grafts. Urethral fistulae, sometimes associated with stenosis, were observed, which might be prevented by urethral catheter application. High-density collagen gel tubes may be clinically useful as an effective treatment of congenital and acquired urethral pathologies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Machado-Joseph disease or Spinocerebellar ataxia type 3 is a progressive fatal neurodegenerative disorder caused by the polyglutamine-expanded protein ataxin-3. Recent studies demonstrate that RNA interference is a promising approach for the treatment of Machado-Joseph disease. However, whether gene silencing at an early time-point is able to prevent the appearance of motor behavior deficits typical of the disease when initiated before onset of the disease had not been explored. Here, using a lentiviral-mediated allele-specific silencing of mutant ataxin-3 in an early pre-symptomatic cerebellar mouse model of Machado-Joseph disease we show that this strategy hampers the development of the motor and neuropathological phenotypic characteristics of the disease. At the histological level, the RNA-specific silencing of mutant ataxin-3 decreased formation of mutant ataxin-3 aggregates, preserved Purkinje cell morphology and expression of neuronal markers while reducing cell death. Importantly, gene silencing prevented the development of impairments in balance, motor coordination, gait and hyperactivity observed in control mice. These data support the therapeutic potential of RNA interference for Machado-Joseph disease and constitute a proof of principle of the beneficial effects of early allele-specific silencing for therapy of this disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have recently reported that Notch 1, a member of the Notch multigene family, is essential for the development of murine T cells. Using a mouse model in which Notch 1 is inactivated in bone marrow (BM) precursors we have shown that B cells instead of T cells are found in the thymus of BM chimeras. However, it is not clear whether these B cells develop by default from a common lymphoid precursor due to the absence of Notch 1 signaling, or whether they arise as a result of perturbed migration of BM-derived B cells and/or altered homeostasis of normal resident thymic B cells. In this report we show that Notch 1-deficient thymic B cells resemble BM B cells in phenotype and turnover kinetics and are located predominantly in the medulla and corticomedullary junction. Peripheral blood lymphocyte analysis shows no evidence of recirculating Notch1(-/)- BM B cells. Furthermore, lack of T cell development is not due to a failure of Notch1(-/)- precursors to home to the thymus, as even after intrathymic reconstitution with BM cells, B cells instead of T cells develop from Notch 1-deficient precursors. Taken together, these results provide evidence for de novo ectopic B cell development in the thymus, and support the hypothesis that in the absence of Notch 1 common lymphoid precursors adopt the default cell fate and develop into B cells instead.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: Various studies from hypoxic-ischemic animals haveinvestigated neuroprotection by targeting necrosis and apoptosis with inconclusive results. Three types of cell death have been described: apoptosis, necrosis and more recently, autophagic cell death. While autophagy is a physiological process of degradation of cellular components, excessive autophagy may be involved in cell death. Recent studies showed that inhibition of autophagy is neuroprotective in rodent neonatal models of cerebral ischemia. Furthermore, neonatal hypoxia-ischemia strongly increased neuronal autophagic flux which is linked to cell death in a rat model of perinatal asphyxia. Following our observations in animals, the aim of the present study was to characterize the different neuronal death phenotypes and to clarify whether autophagic cell death could be also involved in neuronal death in the human newborns after perinatal asphyxia. Methods: we selected retrospectively and anonymously all newborns who died in our unit of neonatology between 2004 and 2009, with the following criteria: gestational age >36 weeks, diagnosis of perinatal asphyxia (Apgar <5 at 5 minutes, arterial pH <7.0 at 1 hour of life and encephalopathy Sarnat III) and performed autopsy. The brain of 6 cases in asphyxia group and 6 control cases matching gestational age who died of pulmonary or other malformations were selected. On histological sections of thalamus, frontal cortex and hippocampus, different markers of apoptosis (caspase 3, TUNEL), autophagosomes (LC3-II) and lysosomes (LAMP1, Cathepsin D) were tested by immunohistochemistry. Results: Preliminary studies on markers of apoptosis (TUNEL, caspase 3) and of autophagy (Cathepsin D, LC3II, LAMP1) showed an expected increase of apoptosis, but also an increase of neuronal autophagic flux in the selected areas. The distribution seems to be region specific. Conclusion: This is the first time that autophagic flux linked with cell death is shown in brain of human babies, in association with hypoxicischemic encephalopathy. This work leads to a better understanding of the mechanisms associated with neuronal death following perinatal asphyxia and determines whether autophagy could be a promising therapeutic target.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Kinetic parameters of T cell receptor (TCR) interactions with its ligand have been proposed to control T cell activation. Analysis of kinetic data obtained has so far produced conflicting insights; here, we offer a consideration of this problem. As a model system, association and dissociation of a soluble TCR (sT1) and its specific ligand, an azidobenzoic acid derivative of the peptide SYIPSAEK-(ABA)I (residues 252-260 from Plasmodium berghei circumsporozoite protein), bound to class I MHC H-2K(d)-encoded molecule (MHCp) were studied by surface plasmon resonance. The association time courses exhibited biphasic patterns. The fast and dominant phase was assigned to ligand association with the major fraction of TCR molecules, whereas the slow component was attributed to the presence of traces of TCR dimers. The association rate constant derived for the fast phase, assuming a reversible, single-step reaction mechanism, was relatively slow and markedly temperature-dependent, decreasing from 7.0 x 10(3) at 25 degrees C to 1.8 x 10(2) M(-1).s(-1) at 4 degrees C. Hence, it is suggested that these observed slow rate constants are the result of unresolved elementary steps of the process. Indeed, our analysis of the kinetic data shows that the time courses of TCR-MHCp interaction fit well to two different, yet closely related mechanisms, where an induced fit or a preequilibrium of two unbound TCR conformers are operational. These mechanisms may provide a rationale for the reported conformational flexibility of the TCR and its unusual ligand recognition properties, which combine high specificity with considerable crossreactivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adult stem cells are instrumental for renewal, regeneration, and repair. Self-renewal and the capacity to generate a tissue for an extended period of time (theoretically a life time) are fundamental properties of adult stem cells that allow longterm tissue reconstruction from a single stem cell as experimentally demonstrated with the bone marrow and the skin. Moreover, human epidermal stem cells (holoclones) can be extensively expanded and manipulated in culture before they are transplanted. We have taken advantage of these unique capacities to demonstrate the feasibility of a single epidermal stem cell approach for ex vivo gene therapy using recessive dystrophic epidermolysis bullosa (RDEB) as a model system. We have demonstrated that is possible to reconstruct a functional epidermis and anchoring fibers from the progeny of a single RDEB epidermal stem cell transduced with a Col7a1 cDNA by means of a SIN retrovirus. Demonstrations of safe proviral insertion, absence of tumorogenicity and of dissemination of the transduced engrafted cells meet regulatory affairs safety requirements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mutations in RPE65 protein is characterized by the loss of photoreceptors, although the molecular pathways triggering retinal cell death remain largely unresolved. The role of the Bcl-2 family of proteins in retinal degeneration is still controversial. However, alteration in Bcl-2-related proteins has been observed in several models of retinal injury. In particular, Bax has been suggested to play a crucial role in apoptotic pathways in murine glaucoma model as well as in retinal detachment-associated cell death. We demonstrated that Bcl-2-related signaling pathway is involved in Rpe65-dependent apoptosis of photoreceptors during development of the disease. Pro-apoptotic Bax alpha and beta isoforms were upregulated in diseased retina. This was associated with a progressive reduction of anti-apoptotic Bcl-2, reflecting imbalanced Bcl-2/Bax ratio as the disease progresses. Moreover, specific translocation of Bax beta from cytosol to mitochondria was observed in Rpe65-deficient retina. This correlated with the initiation of photoreceptor cell loss at 4 months of age, and further increased during disease development. Altogether, these data suggest that Bcl-2-apoptotic pathway plays a crucial role in Leber's congenital amaurosis disease. They further highlight a new regulatory mechanism of Bax-dependent apoptosis based on regulated expression and activation of specific isoforms of this protein.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cancer pain significantly affects the quality of cancer patients, and current treatments for this pain are limited. C-Jun N-terminal kinase (JNK) has been implicated in tumor growth and neuropathic pain sensitization. We investigated the role of JNK in cancer pain and tumor growth in a skin cancer pain model. Injection of luciferase-transfected B16-Fluc melanoma cells into a hindpaw of mouse induced robust tumor growth, as indicated by increase in paw volume and fluorescence intensity. Pain hypersensitivity in this model developed rapidly (<5 days) and reached a peak in 2 weeks, and was characterized by mechanical allodynia and heat hyperalgesia. Tumor growth was associated with JNK activation in tumor mass, dorsal root ganglion (DRG), and spinal cord and a peripheral neuropathy, such as loss of nerve fibers in the hindpaw skin and induction of ATF-3 expression in DRG neurons. Repeated systemic injections of D-JNKI-1 (6 mg/kg, i.p.), a selective and cell-permeable peptide inhibitor of JNK, produced an accumulative inhibition of mechanical allodynia and heat hyperalgesia. A bolus spinal injection of D-JNKI-1 also inhibited mechanical allodynia. Further, JNK inhibition suppressed tumor growth in vivo and melanoma cell proliferation in vitro. In contrast, repeated injections of morphine (5 mg/kg), a commonly used analgesic for terminal cancer, produced analgesic tolerance after 1 day and did not inhibit tumor growth. Our data reveal a marked peripheral neuropathy in this skin cancer model and important roles of the JNK pathway in cancer pain development and tumor growth. JNK inhibitors such as D-JNKI-1 may be used to treat cancer pain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SUMMARY : The recognition by recipient T cells of the allograft major histocompatibility complex (MHC)mismatched antigens is the primary event that ultimately leads to rejection. In the transplantation setting, circulating alloreactive CD4+ T cells play a central role in the initiation and the coordination of the immune response and can initiate the rejection of an allograft via three distinct pathways: the direct, indirect and the recently described semi-direct pathway. However, the exact role of individual CD4+ T-cell subsets in the development of allograft rejection is not clearly defined. Furthermore, besides pathogenic effector T cells, a new subset of T cells with regulatory properties, the CD4+CD25+Foxp3+ (Treg) cells, has come under increased scrutiny over the last decade. The experiments presented in this thesis were designed to better define the phenotype and functional characteristics of CD4+ T-cell subsets and Treg cells in vitro and in vivo in a marine adoptive transfer and skin transplantation model. As Treg cells play a key role in the induction and maintenance of peripheral transplantation tolerance, we have explored whether donor-antigen specific Treg cells could be expanded in vitro. Here we describe a robust protocol for the ex-vivo generation and expansion of antigen-specific Treg cells, without loss of their characteristic phenotype and suppressive function. In our in vivo transplantation model, antigen-specific Treg cells induced donor-specific tolerance to skin allografts in lymphopenic recipients and significantly delayed skin graft rejection in wild-type mice in the absence of any other immunosuppression. Naïve and memory CD4+ T cells have distinct phenotypes, effector functions and in vivo homeostatsis, and thus may play different roles in anti-donor immunity after transplantation. We have analyzed in vitro and in vivo primary alloresponses of naïve and cross-reactive memory CD4+ T cells. We found that the CD4+CD45RBlo memory T-cell pool was heterogeneous and contained cells with regulatory potentials, both in the CD4+CD25+ and CD4+CD25- populations. CD4+ T cells capable of inducing strong primary alloreactive responses in vitro and rejection of a first allograft in vivo were mainly contained within the CD45RBhi naïve CD4+ T-cell compartment. Taken together, the work described in this thesis provides new insights into the mechanisms that drive allograft rejection or donor-specific transplantation tolerance. These results will help to optimise current clinical immunosuppressive regimens used after solid organ transplantation and design new immunotherapeutic strategies to prevent transplant rejection. RÉSUMÉ : ROLE DES SOUS-POPULATIONS DE CELLULES T DANS LE REJET DE GREFFE ET L'INDUCTION DE TOLERANCE EN TRANSPLANTATION La reconnaissance par les cellules T du receveur des alloantigènes du complexe majeur d'histocompatibilité (CMIT) présentés par une greffe allogénique, est le premier événement qui aboutira au rejet de l'organe greffé. Dans le contexte d'une transplantation, les cellules alloréactives T CD4+ circulantes jouent un rôle central dans l'initiation et la coordination de 1a réponse immune, et peuvent initier le rejet par 3 voies distinctes : la voie directe, indirecte et la voie servi-directe, plus récemment décrite. Toutefois, le rôle exact des sous-populations de cellules T CD4+ dans les différentes étapes menant au rejet d'une allogreffe n'est pas clairement établi. Par ailleurs, hormis les cellules T effectrices pathogéniques, une sous-population de cellules T ayant des propriétés régulatrices, les cellules T CD4+CD25+Foxp3+ (Treg), a été nouvellement décrite et est intensément étudiée depuis environ dix ans. Les expériences présentées dans cette thèse ont été planifiées afin de mieux définir le phénotype et les caractéristiques fonctionnels des sous-populations de cellules T CD4+ et des Treg in vitro et in vivo dans un modèle marin de transfert adoptif de cellules et de transplantation de peau. Comme les cellules Treg jouent un rôle clé dans l'induction et le maintien de la tolérance périphérique en transplantation, nous avons investigué la possibilité de multiplier in vitro des cellules Treg avec spécificité antigénique pour le donneur. Nous décrivons ici un protocole reproductible pour la génération et l'expansion ex-vivo de cellules Treg avec spécificité antigénique, sans perte de leur phénotype caractéristique et de leur fonction suppressive. Dans notre modèle in vivo de transplantation de peau, ces cellules Treg pouvaient induire une tolérance spécifique vis-à-vis du donneur chez des souris lymphopéniques, et, chez des souris normales non-lymphopéniques ces Treg ont permis de retarder significativement le rejet en l'absence de tout traitement immunosuppresseur. Les cellules T CD4+ naïves et mémoires se distinguent par leur phénotype, fonction effectrice et leur homéostasie in vivo, et peuvent donc moduler différemment la réponse immune contre le donneur après transplantation. Nous avons analysé in vitro et in vivo les réponses allogéniques primaires de cellules T CD4+ naïves et mémoires non-spécifiques (cross-réactives). Nos résultats ont montré que le pool de cellules T CD4+CD45RB'° mémoires était hétérogène et contenait des cellules avec un potentiel régulateur, aussi bien parmi la sous-population de cellules CD4+CD25+ que CD4+CD25+. Les cellules T CD4+ capables d'induire une alloréponse primaire intense in vitro et le rejet d'une première allogreffe in vivo étaient essentiellement contenues dans le pool de cellules T CD4+CD45RBhi naïves. En conclusion, le travail décrit dans cette thèse amène un nouvel éclairage sur les mécanismes responsables du rejet d'une allogreffe ou de l'induction de tolérance en transplantation. Ces résultats permettront d'optimaliser les traitements immunosuppresseurs utilisés en transplantation clinique et de concevoir des nouvelles stratégies irnmuno-thérapeutiques pour prévenir le rejet de greffe allogénique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One target of protective immunity against the Plasmodium liver stage in BALB/c mice is represented by the circumsporozoite protein (CSP), and mainly involves its recognition by IFN-γ producing specific CD8+T-cells. In a previous in vitro study we showed that primary hepatocytes from BALB/c mice process Plasmodium berghei (Pb) CSP (PbCSP) and present CSP-derived peptides to specific H-2k(d) restricted CD8+T-cells with subsequent killing of the presenting cells. We now extend these observations to an in vivo infection model in which infected hepatocytes and antigen specific T-cell clones are transferred into recipient mice inducing protection from sporozoite (SPZ) challenge. In addition, using a similar protocol, we suggest the capacity of hepatocytes in priming of naïve T-cells to provide protection, as further confirmed by induction of protection after depletion of cross-presenting dendritic cells (DCs) by cytochrome c (cyt c) treatment or using traversal deficient parasites. Our results clearly show that hepatocytes present Plasmodium CSP to specific-primed CD8+T-cells, and could also prime naïve T-cells, leading to protection from infection. These results could contribute to a better understanding of liver stage immune response and design of malaria vaccines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Motivation: Hormone pathway interactions are crucial in shaping plant development, such as synergism between the auxin and brassinosteroid pathways in cell elongation. Both hormone pathways have been characterized in detail, revealing several feedback loops. The complexity of this network, combined with a shortage of kinetic data, renders its quantitative analysis virtually impossible at present.Results: As a first step towards overcoming these obstacles, we analyzed the network using a Boolean logic approach to build models of auxin and brassinosteroid signaling, and their interaction. To compare these discrete dynamic models across conditions, we transformed them into qualitative continuous systems, which predict network component states more accurately and can accommodate kinetic data as they become available. To this end, we developed an extension for the SQUAD software, allowing semi-quantitative analysis of network states. Contrasting the developmental output depending on cell type-specific modulators enabled us to identify a most parsimonious model, which explains initially paradoxical mutant phenotypes and revealed a novel physiological feature.