290 resultados para BACKCROSS-DERIVED LINES
Resumo:
The origin and evolution of CO2 inclusions and calcite veins in peridotite xenoliths of the Pannonian Basin, Hungary, were investigated by means of petrographic investigation and stable isotope analyses. The fluid inclusions recovered in paragenetic olivine and clinopyroxene belong to distinct populations: type A (texturally early) inclusions with regular shapes (often with negative crystal forms) forming intragranular trails, type B (texturally late) inclusions defining randomly oriented trails that reach grain boundaries Type B inclusions are often associated with silicate melt (type C) inclusions Stable carbon isotope compositions in inclusion-hosted CO2 were obtained by vacuum crushing followed by conventional dual inlet as well as continuous flow mass spectrometry in order to eliminate possible lab artifacts. Olivines, clino- and orthopyroxenes of the host peridotite have oxygen isotope compositions from 5.3 to 6.0 parts per thousand (relative to V-SMOW). without any relationship with xenolith texture. Some of the xenoliths contained calcite in various forms veins and infillings in silicate globules in veins, secondary carbonate veins filling cracks and metasomatic veins with diffuse margins The former two carbonate types have delta C-13 values around -13 parts per thousand (relative to V-PDB) and low Sr contents (<05 wt %), whereas the third type,veins with high-temperature metasomatic features have a delta C-13 value of -5 0 parts per thousand and high Sr contents up to 34 wt.% In spite of the mantle-like delta C-13 value and the unusually high Sr content typical for mantle-derived carbonate, trace element compositions have proven a crustal origin. This observation supports the conclusions of earlier studies that the carbonate melt droplets found on peridotite xenoliths in the alkaline basalts represent mobilized sedimentary carbonate. The large delta C-13 range and the C-12-enrichment in the carbonates can be attributed to devolanlization of the migrating carbonate or infiltration of surficial fluids containing C-12-rich dissolved carbon Carbon isotope compositions of inclusion-hosted CO2 range from -17 8 to -4.8 parts per thousand (relative to V-PDB) with no relation to the amount of CO2 released by vacuum crushing. Low-delta C-13 values measured by stepwise heating under vacuum suggest that the carbon component is pristine and not related to surficial contamination, and that primary mantle fluids with delta C-13 values around -5 parts per thousand were at least partly preserved in the xenoliths Tectonic reworking and heating by the basaltic magma resulted in partial CO2 release and local C-13-depletion. (C) 2010 Elsevier B V All rights reserved
Resumo:
Immune responses against tumor-associated antigens rely on efficient epitope presentation. The melanoma-associated antigen (Ag) gp100 contains HLA-A*0201 ligands that are characterized by low to medium binding affinity, among which gp100(209-217) is the most prominent (Kawakami et al., J Immunol 154:3961-3968, 1995). While this epitope is a natural T-cell target, it primes with low-efficiency T-cell responses during immunization. A modified gp100 epitope, gp100(209-217T210M), that contains a Thr to Met substitution at position 2 of the antigenic nonamer is characterized by high binding affinity for HLA-A*0201 and elicits strong and clinically effective T-cell responses. This higher affinity is believed to represent the sole reason for enhanced immunogenicity. Contrasting with this observation is the unpredictable relationship between affinity and immunogenicity observed in other antigen systems. In addition, we noted a striking difference between the capability of endogenously processed gp100(209-217) and gp100(209-217T210M) to induce T-cell responses in an in vitro model. Therefore, we questioned whether factors other than HLA-affinity might play a role in determining the immunogenicity of these epitopes. In the present study, we evaluated the in vitro proteasomal cleavages of 23meric precursor peptides encompassing the native sequence (gp100(201-223)) or the modified sequence (gp100(201-223T210M)). Here we show that the standard proteasome liberates the C-termini of both antigenic peptides but not the N-termini. Quantitative analysis of the digestion products revealed that more of the fragments displaying the final C-termini were produced from the wild-type precursor. However, a stronger TCR engagement was observed when fractions of digested gp100(201-223T210M) were used to activate an HLA-A*0201-expressing target T-cell clone. This difference was also found using separately produced, synthetic nonamers. In conclusion, the high binding affinity of gp100(209-217T210M) seems to compensate for possible differences in proteasomal cleavage at the biological level. Since the final antigenic nonamer is not directly produced by the proteasome, additional further factors may influence the antigenic peptide availability, such as post-proteasomal processing and intracellular peptide transport.
Resumo:
The caspase-3/p120 RasGAP module acts as a stress sensor that promotes pro-survival or pro-death signaling depending on the intensity and the duration of the stressful stimuli. Partial cleavage of p120 RasGAP generates a fragment, called fragment N, which protects stressed cells by activating Akt signaling. Akt family members regulate many cellular processes including proliferation, inhibition of apoptosis and metabolism. These cellular processes are regulated by three distinct Akt isoforms: Akt1, Akt2 and Akt3. However, which of these isoforms are required for fragment N mediated protection have not been defined. In this study, we investigated the individual contribution of each isoform in fragment N-mediated cell protection against Fas ligand induced cell death. To this end, DLD1 and HCT116 isogenic cell lines lacking specific Akt isoforms were used. It was found that fragment N could activate Akt1 and Akt2 but that only the former could mediate the protective activity of the RasGAP-derived fragment. Even overexpression of Akt2 or Akt3 could not rescue the inability of fragment N to protect cells lacking Akt1. These results demonstrate a strict Akt isoform requirement for the anti-apoptotic activity of fragment N.
Resumo:
Peroxynitrite (PN) is a potent nitrating and oxidizing agent generated during various pathological situations affecting the heart. The negative effects of PN result, at least in part, from its ability to activate caspases and apoptosis. RasGAP is a ubiquitously expressed protein that is cleaved sequentially by caspase-3. At low caspase-3 activity, RasGAP is cleaved into an N-terminal fragment, called fragment N, that protects cells by activating the Ras/PI3K/Akt pathway. At high caspase-3 activity, fragment N is further cleaved and this abrogates its capacity to stimulate the antiapoptotic Akt kinase. Fragment N formation is crucial for the survival of cells exposed to a variety of stresses. Here we investigate the pattern of RasGAP cleavage upon PN stimulation and the capacity of fragment N to protect cardiomyocytes. PN did not lead to sequential cleavage of RasGAP. Indeed, PN did not allow accumulation of fragment N because it induced its rapid cleavage into smaller fragments. No situations were found in cells treated with PN in which the presence of fragment N was associated with survival. However, expression of a caspase-resistant form of fragment N in cardiomyocytes protected them from PN-induced apoptosis. Our results indicate that the antiapoptotic pathway activated by fragment N is effective at inhibiting PN-induced apoptosis (as seen when cardiomyocytes express a capase-3-resistant form of fragment N) but because fragment N is too transiently generated in response to PN, no survival response is effectively produced. This may explain the marked deleterious consequences of PN generation in various organs, including the heart.
Resumo:
Background: This trial was conducted to evaluate the safety and immunogenicity of two virosome formulated malaria peptidomimetics derived from Plasmodium falciparum AMA-1 and CSP in malaria semi-immune adults and children.Methods: The design was a prospective randomized, double-blind, controlled, age-deescalating study with two immunizations. 10 adults and 40 children (aged 5-9 years) living in a malaria endemic area were immunized with PEV3B or virosomal influenza vaccine Inflexal (R) V on day 0 and 90.Results: No serious or severe adverse events (AEs) related to the vaccines were observed. The only local solicited AE reported was pain at injection site, which affected more children in the Inflexal (R) V group compared to the PEV3B group (p = 0.014). In the PEV3B group, IgG ELISA endpoint titers specific for the AMA-1 and CSP peptide antigens were significantly higher for most time points compared to the Inflexal (R) V control group. Across all time points after first immunization the average ratio of endpoint titers to baseline values in PEV3B subjects ranged from 4 to 15 in adults and from 4 to 66 in children. As an exploratory outcome, we found that the incidence rate of clinical malaria episodes in children vaccinees was half the rate of the control children between study days 30 and 365 (0.0035 episodes per day at risk for PEV3B vs. 0.0069 for Inflexal (R) V; RR = 0.50 [95%-CI: 0.29-0.88], p = 0.02).Conclusion: These findings provide a strong basis for the further development of multivalent virosomal malaria peptide vaccines.
Resumo:
The therapeutic potential of adult stem cells may become a relevant option in clinical care in the future. In hand and plastic surgery, cell therapy might be used to enhance nerve regeneration and help surgeons and clinicians to repair debilitating nerve injuries. Adipose-derived stem cells (ASCs) are found in abundant quantities and can be harvested with a low morbidity. In order to define the optimal fat harvest location and detect any potential differences in ASC proliferation properties, we compared biopsies from different anatomical sites (inguinal, flank, pericardiac, omentum, neck) in Sprague-Dawley rats. ASCs were expanded from each biopsy and a proliferation assay using different mitogenic factors, basic fibroblast growth factor (bFGF) and platelet-derived growth factor (PDGF) was performed. Our results show that when compared with the pericardiac region, cells isolated from the inguinal, flank, omental and neck regions grow significantly better in growth medium alone. bFGF significantly enhanced the growth rate of ASCs isolated from all regions except the omentum. PDGF had minimal effect on ASC proliferation rate but increases the growth of ASCs from the neck region. Analysis of all the data suggests that ASCs from the neck region may be the ideal stem cell sources for tissue engineering approaches for the regeneration of nervous tissue.
Resumo:
The vaccine potential of Plasmodium falciparum liver stage antigen-3 (LSA3) was investigated in Aotus monkeys using two long synthetic peptides corresponding respectively to an N-terminal non-repeat peptide (NRP) and repeat 2 (R2) region of the LSA3, adjuvanted by ASO2. Both 100-222 (NRP) and 501-596 repeat peptides induced effector B- and T-cell responses in terms of antigen-driven antibodies and/or specific IFN-gamma secretion. Animals challenged with P. falciparum sporozoites were protected following immunization with either the NRP region alone or the NRP combined with the R2 repeat region, as compared with controls receiving the adjuvant alone. These results indicate that the NRP may be sufficient to induce full, sterile protection and confirm the vaccine potential of LSA3 previously demonstrated in chimpanzees and in Aotus.
Resumo:
Bioassays with bioreporter bacteria are usually calibrated with analyte solutions of known concentrations that are analysed along with the samples of interest. This is done as bioreporter output (the intensity of light, fluorescence or colour) does not only depend on the target concentration, but also on the incubation time and physiological activity of the cells in the assay. Comparing the bioreporter output with standardized colour tables in the field seems rather difficult and error-prone. A new approach to control assay variations and improve application ease could be an internal calibration based on the use of multiple bioreporter cell lines with drastically different reporter protein outputs at a given analyte concentration. To test this concept, different Escherichia coli-based bioreporter strains expressing either cytochrome c peroxidase (CCP, or CCP mutants) or β-galactosidase upon induction with arsenite were constructed. The reporter strains differed either in the catalytic activity of the reporter protein (for CCP) or in the rates of reporter protein synthesis (for β-galactosidase), which, indeed, resulted in output signals with different intensities at the same arsenite concentration. Hence, it was possible to use combinations of these cell lines to define arsenite concentration ranges at which none, one or more cell lines gave qualitative (yes/no) visible signals that were relatively independent of incubation time or bioreporter activity. The discriminated concentration ranges would fit very well with the current permissive (e.g. World Health Organization) levels of arsenite in drinking water (10 µg l−1).
Resumo:
One of the most obvious characteristics of the egg cells of oviparous animals is their large size resulting to a major extent from the deposition of nutritional reserves, mainly constituted of yolk proteins. In general, these are derived from a precursor called vitellogenin, which undergoes posttranslational modifications during secretion and during transport into and storage within the oocytes. Comparative analysis of the structural organization of the vitellogenin gene and of its product in different species shows that the vitellogenin gene is very ancient and that in vertebrates the gene may have more resemblance to the earliest gene than in invertebrates.
Resumo:
Résumé Les esters sont des agents thérapeutiques largement utilisés comme médicaments et prodrogues. Leurs dégradation est chimique et enzymatique. Le Chapitre IV de cette thèse a comme objet l'hydrolyse chimique de plusieurs dérivés esters du 2,3-dimethoxyphenol. Des composés modèles ont été synthétisés dans le but de déterminer leur mécanismes de dégradation. Les profils d'ionisation et d'hydrolyse de ces composés ont permis d'identifier la présence d'une catalyse intramoléculaire basique par un atome d'azote non-protoné. Les effets électroniques exercés par les groupes phenylethenyle et phenylcyclopropyle influencent également la vitesse d'hydrolyse des esters. La résolution des problèmes liés à l'adsorption et la perméation est devenue à nos jours l'étape limitante dans la conception de nouveaux médicaments car de trop nombreux candidats prometteurs ont échoué à cause d'une mauvaise biodisponibilité. La lipophilie décrit le partage d'un médicament entre une membrane lipidique et son environnement physiologique aqueux, et de ce fait elle influence sa pharmacocinétique. Des études récents ont mis en évidence l'importance de la détermination de la lipophilie des espèces ionisées vu leur considérable impact biologique. Le Chapitre V de cette thèse est centré sur une classe particulière de composés ionisables, les zwitterions. Plusieurs methoxybenzylpiperazines de nature zwitterionique ont été étudiées. Leurs profils d'ionisation ont montré que dans un large intervalle de pH, l'espèce prédominante est le zwitterion. Les profils de lipophilie ont montré que leur lipophilie est plus élevée que celles des zwitterions courants. Une interaction électrostatique entre l'oxygène du carboxylate et l'azote protoné est responsable de ce profil et rend la plupart des zwitterions non-donneurs de liaison hydrogène. Ces deux aspects peuvent favoriser le passage de la barrière hémato-éncephalique. Les données biologiques ont par la suite confirmé cette hypothèse pour un certain nombre de composés. Résumé large public Les esters sont des composés souvent rencontrés en chimie thérapeutique. Ils sont dégradés en milieu aqueux par une réaction d'hydrolyse, avec ou sans la participation d'enzymes. Dans ce travail de thèse, une série d'esters ont été étudiés dans le but d'établir une relation entre leur structure et les mécanismes responsables de leur dégradation chimique. Il a été prouvé que la dégradation est accélérée par un atome d'azote non-protoné. D'autres mécanismes peuvent intervenir en fonction du pH du milieu. La présence d'une liaison simple ou double ou d'un groupe phenylcyclopropyle peut également influencer la vitesse de dégradation. Il est essentiel, dans la conception de nouveaux médicaments, d'optimiser les étapes qui influencent leur distribution dans le corps. Ce dernier peut être visualisé comme une série infinie de compartiments aqueux séparés par des membranes lipidiques. La lipophilie est une propriété moléculaire importante qui décrit le passage des barrières rencontrées par les médicaments. Des études récentes ont mis en évidence l'importance de déterminer la lipophilie des espèces ionisées vu leur considérable impact biologique. Dans ce travail de thèse a été étudiée une série particulière de composés ionisables , les zwitterions. Une relation a été établie entre leur structure et leur proprietés physico-chimiques. Une lipophilie plus élevée par rapport à celle des zwitterions courants a été trouvée. Une interaction entre les groupes chargés des zwitterions étudiés est responsable de ce comportement inattendu et rend la plupart d'entre eux non-donneurs de liaison hydrogène. Ces deux facteurs peuvent favoriser la pénétration cérébrale. Les données biologiques ont confirmé cette hypothèse pour un certain nombre de composés. Summary Esters are often encountered in medicinal chemistry. Their hydrolysis may be chemical as well as enzymatic. Chapter IV of this manuscript provides a mechanistic insight into the chemical hydrolysis of a particular series of basic esters derived from 2,3-dimethoxyphenol. Their ionization and pH-rate profiles allowed to identify the presence of an intramolecular base catalysis by a non-protonated nitrogen atom. Electronic effects exerted by the phenylethenyl and phenylcyclopropyl groups that are present in the structure of the esters also influenced their rate of hydrolysis. Numerous works in the literature witness of the importance of lipophilicity in determining the fate of a drug. Most published partition coefficients are those of neutral species. In contrast, no exhaustive treatment of the lipophilicity of charged molecules is available at present, and a lack of information characterizes in particular zwitterions. Chapter V of this manuscript provides an insight into the physicochemical parameters of a series of zwitterionic methoxybenzylpiperazines. Their ionization profiles showed that they exist predominantly in the zwitterionic form in a broad pH-range. An electrostatic interaction between the oxygen of the carboxylate and the protonated nitrogen atom is increases the lipophilicity of the investigated zwitterions, and prevents the majority of them to express their hydrogen-bonding capacity. These two aspects may favor the crossing of the blood-brain barrier. The available ratios PSt/PSf measured in vitro have confirmed this point for a number of compounds.
Resumo:
Cilengitide is a cyclic peptide antagonist of integrins alphavbeta3 and alphavbeta5 that is currently being evaluated as a novel therapeutic agent for recurrent and newly diagnosed glioblastoma. Its mode of action is thought to be mainly antiangiogenic but may include direct effects on tumor cells, notably on attachment, migration, invasion, and viability. In this study we found that, at clinically relevant concentrations, cilengitide (1-100 microM) induces detachment in some but not all glioma cell lines, while the effect on cell viability is modest. Detachment induced by cilengitide could not be predicted by the level of expression of the cilengitide target molecules, alphavbeta3 and alphavbeta5, at the cell surface. Glioma cell death induced by cilengitide was associated with the generation of caspase activity, but caspase activity was not required for cell death since ectopic expression of cytokine response modifier (crm)-A or coexposure to the broad-spectrum caspase inhibitor zVAD-fmk was not protective. Moreover, forced expression of the antiapoptotic protein marker Bcl-X(L) or altering the p53 status did not modulate cilengitide-induced cell death. No consistent effects of cilengitide on glioma cell migration or invasiveness were observed in vitro. Preliminary clinical results indicate a preferential benefit from cilengitide added to temozolomide-based radiochemotherapy in patients with O(6)-methylguanine DNA methyltransferase (MGMT) gene promoter methylation. Accordingly, we also examined whether the MGMT status determines glioma cell responses to cilengitide alone or in combination with temozolomide. Neither ectopic expression of MGMT in MGMT-negative cells nor silencing the MGMT gene in MGMT-positive cells altered glioma cell responses to cilengitide alone or to cilengitide in combination with temozolomide. These data suggest that the beneficial clinical effects derived from cilengitide in vivo may arise from altered perfusion, which promotes temozolomide delivery to glioma cells.
Resumo:
One of the major hurdles of isolating stable, inducible or constitutive high-level producer cell lines is the time-consuming selection procedure. Given the variation in the expression levels of the same construct in individual clones, hundreds of clones must be isolated and tested to identify one or more with the desired characteristics. Various boundary elements (BEs), matrix attachment regions, and locus control regions (LCRs) were screened for their ability to augment the expression of heterologous genes in Chinese hamster ovary (CHO) cells. Of the chromatin elements assayed, the chicken lysozyme matrix-attachment region (MAR) was the only element to significantly increase stable reporter expression. We found that the use of the MAR increases the proportion of high-producing clones, thus reducing the number of clones that need to be screened. These benefits are observed both for constructs with MARs flanking the transgene expression cassette, as well as when constructs are co-transfected with the MAR on a separate plasmid. Moreover, the MAR was co-transfected with a multicomponent regulatable beta-galactosidase expression system in C2C12 cells and several clones exhibiting regulated expression were identified. Hence, MARs are useful in the development of stable cell lines for production or regulated expression.
Resumo:
Glucagon-like peptide-1 (GLP-1) is a gastrointestinal hormone that potentiates glucose-induced insulin secretion by pancreatic beta cells. The mechanisms of interaction between GLP-1 and glucose signaling pathways are not well understood. Here we studied the coupling of the cloned GLP-1 receptor, expressed in fibroblasts or in COS cells, to intracellular second messengers and compared this signaling with that of the endogenous receptor expressed in insulinoma cell lines. Binding of GLP-1 to the cloned receptor stimulated formation of cAMP with the same dose dependence and similar kinetics, compared with the endogenous receptor of insulinoma cells. Compared with forskolin-induced cAMP accumulation, that induced by GLP-1 proceeded with the same initial kinetics but rapidly reached a plateau, suggesting fast desensitization of the receptor. Coupling to the phospholipase C pathway was assessed by measuring inositol phosphate production and variations in the intracellular calcium concentration. No GLP-1-induced production of inositol phosphates could be measured in the different cell types studied. A rise in the intracellular calcium concentration was nevertheless observed in transfected COS cells but was much smaller than that observed in response to norepinephrine in cells also expressing the alpha 1B-adrenergic receptor. Importantly, no such increase in the intracellular calcium concentration could be observed in transfected fibroblasts or insulinoma cells, which, however, responded well to thrombin or carbachol, respectively. Together, our data show that interaction between GLP-1 and glucose signaling pathways in beta cells may be mediated uniquely by an increase in the intracellular cAMP concentration, with the consequent activation of protein kinase A and phosphorylation of elements of the glucose-sensing apparatus or of the insulin granule exocytic machinery.
Resumo:
Understanding the molecular aberrations involved in the development and progression of metastatic melanoma (MM) is essential for a better diagnosis and targeted therapy. We identified breast cancer suppressor candidate-1 (BCSC-1) as a novel tumor suppressor in melanoma. BCSC-1 expression is decreased in human MM, and its ectopic expression in MM-derived cell lines blocks tumor formation in vivo and melanoma cell proliferation in vitro while increasing cell migration. We demonstrate that BCSC-1 binds to Sox10, which down regulates MITF, and results in a switch of melanoma cells from a proliferative to a migratory phenotype. In conclusion, we have identified BCSC-1 as a tumor suppressor in melanoma and as a novel regulator of the MITF pathway.