207 resultados para Impost Substitution
Resumo:
In HLA-A2 individuals, the CD8 T cell response against the differentiation Ag Melan-A is mainly directed toward the peptide Melan-A26-35. The murine Melan-A24-33 sequence encodes a peptide that is identical with the human Melan-A26-35 decamer, except for a Thr-to-Ile substitution at the penultimate position. Here, we show that the murine Melan-A24-33 is naturally processed and presented by HLA-A2 molecules. Based on these findings, we compared the CD8 T cell response to human and murine Melan-A peptide by immunizing HLA-A2 transgenic mice. Even though the magnitude of the CTL response elicited by the murine Melan-A peptide was lower than the one elicited by the human Melan-A peptide, both populations of CTL recognized the corresponding immunizing peptide with the same functional avidity. Interestingly, CTL specific for the murine Melan-A peptide were completely cross-reactive against the orthologous human peptide, whereas anti-human Melan-A CTL recognized the murine Melan-A peptide with lower avidity. Structurally, this discrepancy could be explained by the fact that Ile32 of murine Melan-A24-33 created a larger TCR contact area than Thr34 of human Melan-A26-35. These data indicate that, even if immunizations with orthologous peptides can induce strong specific T cell responses, the quality of this response against syngeneic targets might be suboptimal due to the structure of the peptide-TCR contact surface.
Resumo:
RPE65 is a retinoid isomerase required for the production of 11-cis-retinal, the chromophore of both cone and rod visual pigments. We recently established an R91W knock-in mouse strain as homologous animal model for patients afflicted by this mutation in RPE65. These mice have impaired vision and can only synthesize minute amounts of 11-cis-retinal. Here, we investigated the consequences of this chromophore insufficiency on cone function and pathophysiology. We found that the R91W mutation caused cone opsin mislocalization and progressive geographic cone atrophy. Remnant visual function was mostly mediated by rods. Ablation of rod opsin corrected the localization of cone opsin and improved cone retinal function. Thus, our analyses indicate that under conditions of limited chromophore supply rods and cones compete for 11-cis-retinal that derives from regeneration pathway(s) which are reliant on RPE65. Due to their higher number and the instability of cone opsin, rods are privileged under this condition while cones suffer chromophore deficiency and degenerate. These findings reinforce the notion that in patients any effective gene therapy with RPE65 needs to target the cone-rich macula directly to locally restore the cones' chromophore supply outside the reach of rods.
Resumo:
BACKGROUND: After cardiac surgery with cardiopulmonary bypass (CPB), acquired coagulopathy often leads to post-CPB bleeding. Though multifactorial in origin, this coagulopathy is often aggravated by deficient fibrinogen levels. OBJECTIVE: To assess whether laboratory and thrombelastometric testing on CPB can predict plasma fibrinogen immediately after CPB weaning. PATIENTS / METHODS: This prospective study in 110 patients undergoing major cardiovascular surgery at risk of post-CPB bleeding compares fibrinogen level (Clauss method) and function (fibrin-specific thrombelastometry) in order to study the predictability of their course early after termination of CPB. Linear regression analysis and receiver operating characteristics were used to determine correlations and predictive accuracy. RESULTS: Quantitative estimation of post-CPB Clauss fibrinogen from on-CPB fibrinogen was feasible with small bias (+0.19 g/l), but with poor precision and a percentage of error >30%. A clinically useful alternative approach was developed by using on-CPB A10 to predict a Clauss fibrinogen range of interest instead of a discrete level. An on-CPB A10 ≤10 mm identified patients with a post-CPB Clauss fibrinogen of ≤1.5 g/l with a sensitivity of 0.99 and a positive predictive value of 0.60; it also identified those without a post-CPB Clauss fibrinogen <2.0 g/l with a specificity of 0.83. CONCLUSIONS: When measured on CPB prior to weaning, a FIBTEM A10 ≤10 mm is an early alert for post-CPB fibrinogen levels below or within the substitution range (1.5-2.0 g/l) recommended in case of post-CPB coagulopathic bleeding. This helps to minimize the delay to data-based hemostatic management after weaning from CPB.
Resumo:
Variants of the melanocortin-1 receptor (MC1R) gene result in abrupt, naturally selected colour morphs. These genetic variants may differentially affect sexual dimorphism if one morph is naturally selected in the two sexes but another morph is naturally or sexually selected only in one of the two sexes (e.g. to confer camouflage in reproductive females or confer mating advantage in males). Therefore, the balance between natural and sexual selections can differ between MC1R variants, as suggest studies showing interspecific correlations between sexual dimorphism and the rate of nonsynonymous vs. synonymous amino acid substitutions at the MC1R. Surprisingly, how MC1R is related to within-species sexual dimorphism, and thereby to sex-specific selection, has not yet been investigated. We tackled this issue in the barn owl (Tyto alba), a species showing pronounced variation in the degree of reddish pheomelanin-based coloration and in the number and size of black feather spots. We found that a valine (V)-to-isoleucine (I) substitution at position 126 explains up to 30% of the variation in the three melanin-based colour traits and in feather melanin content. Interestingly, MC1R genotypes also differed in the degree of sexual colour dimorphism, with individuals homozygous for the II MC1R variant being 2 times redder and 2.5 times less sexually dimorphic than homozygous individuals for the VV MC1R variant. These findings support that MC1R interacts with the expression of sexual dimorphism and suggest that a gene with major phenotypic effects and weakly influenced by variation in body condition can participate in sex-specific selection processes.
Resumo:
NlmCategory="UNASSIGNED">Sleep and sleep disorders are complex and highly variable phenotypes regulated by many genes and environment. The catechol-O-methyltransferase (COMT) gene is an interesting candidate, being one of the major mammalian enzymes involved in the catabolism of catecholamines. The activity of COMT enzyme is genetically polymorphic due to a guanine-to-adenine transition at codon 158, resulting in a valine (Val) to methionine (Met) substitution. Individuals homozygous for the Val allele show higher COMT activity, and lower dopaminergic signaling in prefrontal cortex (PFC) than subjects homozygous for the Met allele. Since COMT has a crucial role in metabolising dopamine, it was suggested that the common functional polymorphism in the COMT gene impacts on cognitive function related to PFC, sleep-wake regulation, and potentially on sleep pathologies. The COMT Val158Met polymorphism may predict inter-individual differences in brain electroencephalography (EEG) alpha oscillations and recovery processes resulting from partial sleep loss in healthy individuals. The Val158Met polymorphism also exerts a sexual dimorphism and has a strong effect on objective daytime sleepiness in patients with narcolepsy-cataplexy. Since the COMT enzyme inactivates catecholamines, it was hypothesized that the response to stimulant drugs differs between COMT genotypes. Modafinil maintained executive functioning performance and vigilant attention throughout sleep deprivation in subjects with Val/Val genotype, but less in those with Met/Met genotype. Also, homozygous Met/Met patients with narcolepsy responded to lower doses of modafinil compared to Val/Val carriers. We review here the critical role of the common functional COMT gene polymorphism, COMT enzyme activity, and the prefrontal dopamine levels in the regulation of sleep and wakefulness in normal subjects, in narcolepsy and other sleep-related disorders, and its impact on the response to psychostimulants.
Resumo:
There is currently a lack of guidance on methodology and special considerations for transitioning patients from oxcarbazepine (OXC) or carbamazepine (CBZ) to eslicarbazepine acetate (ESL), if deemed clinically necessary. An advisory panel of epilepsy experts was convened to share their experience on the use of adjunctive ESL in clinical practice and to provide practical recommendations to help address this gap. When changing over from OXC to ESL, an OXC:ESL dose ratio of 1:1 should be employed to calculate the ESL target dose, and the changeover can take place overnight. No changes to comedication are required. Since CBZ has a different mechanism of action to ESL and is a stronger inducer of cytochrome P450 (CYP) enzymes, the transitioning of patients from CBZ to ESL requires careful consideration on a patient-by-patient basis. In general, a CBZ:ESL dose ratio of 1:1.3 should be employed to calculate the ESL target dose, and patients should be transitioned over a minimum period of 1-2weeks. Special considerations include adjustment of titration schedule and target dose in elderly patients and those with hepatic or renal impairment and potential adjustment of comedications metabolized by CYP enzymes. In summary, due to structural distinctions between ESL, OXC, and CBZ, which affect mechanism of action and tolerability, there are clinical situations in which it may be appropriate to consider transitioning patients from OXC or CBZ to ESL. Changing patients over from OXC to ESL is generally more straightforward than transitioning patients from CBZ to ESL, which requires careful consideration.
Resumo:
We described for the first time the amino acid substitutions conferring rifampicin resistance in eight Propionibacterium acnes strains isolated from patients with biofilm or device-related infections. We identified different mutations in cluster I and one mutation, never reported, in cluster II of the rpoB gene (I480V) associated with the most frequent one in cluster I (S442L). Half of the patients previously received treatment with rifampicin.
Resumo:
A rare germ-line polymorphism in codon 47 of the p53 gene replaces the wild-type proline (CCG) with a serine (TCG). Restriction analysis of 101 human samples revealed the frequency of the rare allele to be 0% (n = 69) in Caucasians and 4.7% (3/64, n = 32) among African-Americans. To investigate the consequence of this amino acid substitution, a cDNA construct (p53 mut47ser) containing the mutation was introduced into a lung adenocarcinoma cell line (Calu-6) that does not express p53. A growth suppression similar to that obtained after introduction of a wild-type p53 cDNA construct was observed, in contrast to the result obtained by introduction of p53 mut143ala. Furthermore, expression of neither p53 mut47ser nor wild-type p53 was tolerated by growing cells. In transient expression assays, both mut47ser and wild-type p53 activated the expression of a reporter gene linked to a p53 binding sequence (PG13-CAT) and inhibited the expression of the luciferase gene under the control of the Rous sarcoma virus promoter (RSVluc). In the same assay, mut143ala did not activate the expression of PG13-CAT and produced only a slight inhibitory effect on RSVluc. These findings indicate that the p53 variant with a serine at codon 47 should be considered as a rare germ-line polymorphism that does not alter the growth-suppression activity of p53.
Resumo:
Store-operated Ca(2+) channels (SOCs) are voltage-independent Ca(2+) channels activated upon depletion of the endoplasmic reticulum Ca(2+) stores. Early studies suggest the contribution of such channels to Ca(2+) homeostasis in insulin-secreting pancreatic β-cells. However, their composition and contribution to glucose-stimulated insulin secretion (GSIS) remains unclear. In this study, endoplasmic reticulum Ca(2+) depletion triggered by acetylcholine (ACh) or thapsigargin stimulated the formation of a ternary complex composed of Orai1, TRPC1, and STIM1, the key proteins involved in the formation of SOCs. Ca(2+) imaging further revealed that Orai1 and TRPC1 are required to form functional SOCs and that these channels are activated by STIM1 in response to thapsigargin or ACh. Pharmacological SOCs inhibition or dominant negative blockade of Orai1 or TRPC1 using the specific pore mutants Orai1-E106D and TRPC1-F562A impaired GSIS in rat β-cells and fully blocked the potentiating effect of ACh on secretion. In contrast, pharmacological or dominant negative blockade of TRPC3 had no effect on extracellular Ca(2+) entry and GSIS. Finally, we observed that prolonged exposure to supraphysiological glucose concentration impaired SOCs function without altering the expression levels of STIM1, Orai1, and TRPC1. We conclude that Orai1 and TRPC1, which form SOCs regulated by STIM1, play a key role in the effect of ACh on GSIS, a process that may be impaired in type 2 diabetes.
Resumo:
L'article propose une défense et légitimation du RBI. Son introduction, montre-t-il, constituerait un changement de paradigme politique : il substituerait à la régulation de plus en plus exclusive des intérêts par le marché, une forme assurant à chacun·e l'assurance des moyens de son intégration sociale. Dans le cadre capitaliste contemporain caractérisé par l'accélération de la substitution du travail mort au travail vivant, il permettrait de libérer l'activité en mettant fin au chantage conditionnant l'accès à l'argent à l'obtention d'un emploi sur le marché du travail. En sorte que le RBI s'avère ainsi, hic et nunc, condition de liberté pour l'immense majorité d'entre nous.
Resumo:
RGD peptide sequences are known to regulate cellular activities by interacting with α5β1, αvβ5 and αvβ3 integrin, which contributes to the wound healing process. In this study, RGDC peptide was immobilized onto chitosan derivative 1,6-diaminohexane-O-carboxymethyl-N,N,N-trimethyl chitosan (DAH-CMTMC) to display RGDC-promoting adhesion for enhanced wound healing. The efficiency of N-methylation, O-carboxymethylation and spacer grafting was quantitatively and qualitatively analyzed by (1)H NMR and FTIR, yielding 0.38 degree of substitution for N-methylation and >0.85 for O-carboxymethylation. The glass transition temperatures for chitosan derivatives were also studied. Peptide immobilization was achieved through sulfhydryl groups using sulfosuccinimidyl (4-iodoacetyl)amino-benzoate (sulfo-SIAB method). RGDC immobilized peptide onto DAH-CMTMC was found to be about 15.3μg/mg of chitosan derivative by amino acid analysis (AAA). The significant increase of human dermal fibroblast (HDF) viability in vitro over 7 days suggests that RGDC-functionalized chitosan may lead to enhanced wound healing (viability >140%). Moreover, bio-adhesion and proliferation assays confirmed that coatings of RGDC-functionalized chitosan derivatives exhibit in vitro wound healing properties by enhancing fibroblast proliferation and adhesion. These results showed that RGDC peptide-functionalized chitosan provides an optimal environment for fibroblast adhesion and proliferation.
Resumo:
Objectif : Abstract Le but de cette étude consiste à étudier un éventuel lien entre le dosage du traitement de substitution par la Méthadone® pendant la grossesse et les issues obstétricales (rupture prématurée des membranes, menace d'accouchement prématuré), ainsi que néonatales (telles que le retard de croissance intrautérin, l'adaptation néonatale, le sevrage néonatal aux opiacés et l'hypoglycémie néonatale). Nous évaluerons également le développement psychomoteur de l'enfant à court terme (jusqu'à 18 mois de vie) via l'échelle de Griffiths. Méthode : Il s'agit d'une étude rétrospective sur 50 femmes enceintes sous Méthadone® suivies au CHUV et ayant accouché entre les années 2000 et 2010, ainsi que sur leurs enfants suivis par l'Unité du Développement du CHUV et évalués moyennant l'échelle du développement psychomoteur appelée Griffiths (il s'agit de 26 enfants entre 6-9 mois et 20 entre 18-19 mois). Pour ce faire, nous avons parcouru les différentes archives du CHUV (informatiques et papiers) dans un premier temps. Ces données ont été ensuite saisies dans un tableau Excel avant d'être analysées via STATA. Résumé des résultats : En fonction du dosage de la Méthadone®, 27% (dose plus faible) à 47 % (dose plus élevée) des femmes de notre collectif accouchent prématurément (p = 0.139). 48 % de leurs nouveau-nés présentent un retard de croissance intra-utérin (RCIU). Ce risque est d'autant plus élevé que la Méthadone est faiblement dosée (p = 0.073). Inversement au RCIU, le risque d'hypoglycémie néonatale croît avec la dose maternelle de Méthadone® (p = 0.148). La survenue du syndrome de sevrage néonatal aux opiacés ainsi que sa durée sont significativement plus importantes lorsque le dosage maternel de Méthadone est élevé (p = 0.022 ; p = 0.0118) ou lors de la prise concomitante de benzodiazépines (p = 0.004 ; p = 0.0129). La prise d'autres substances illicites a elle aussi tendance à prolonger le sevrage (p = 0.065). Entre 6-9 mois de vie, il y a plus de microcéphalie (périmètre crânien inférieur au P10) lorsque les enfants reçoivent une dose plus faible in utéro (p = 0.005). Le développement psychomoteur est quant à lui plus favorable lorsque le traitement de substitution est fortement dosé (p = 0.039) et que l'enfant vit chez sa mère biologique (p = 0.050) ou bénéficie d'un contact maternel régulier (p = 0.008). L'effet du dosage de la Méthadone® (p = 0.683) et du lieu de vie (p = 0.211) sur le développement psychomoteur ont néanmoins tendance à s'estomper entre 18-19 mois de vie. Conclusions : Bien qu'un traitement de substitution par la Méthadone hautement dosé augmente la survenue et la durée du syndrome de sevrage néonatal aux opiacés, il y a maintenant des indices pour un meilleur outcome de l'enfant lorsque la substitution est importante (moins de RCIU, de microcéphalie et un développement psychomoteur plus favorable). A propos de l'issue néonatale, tous les enfants nés de mères toxicodépendantes semblent être à risque d'hypoglycémie néonatale. Implications pratiques : Il serait désormais préférable d'augmenter les doses de substitution des futures mères toxicomanes d'autant plus lorsque celles-ci le réclament et tous leurs enfants devraient bénéficier d'une alimentation précoce et de contrôles glycémiques, même s'ils sont eutrophiques.