279 resultados para Differential fluoresence induction


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cervical cancer, the second leading cause of cancer mortality in women worldwide, results from infection with a subset of human papillomaviruses (HPV), HPV-16 being the most prevalent type. The available prophylactic vaccines are an effective strategy to prevent this cancer in the long term. However, they only target 70-80% of all cervical cancers and cannot control existing HPV infections and associated lesions. Therapeutic vaccines are thus necessary for women who cannot benefit from prophylactic vaccination. Induction of protective immune responses in the genital mucosa (GM) may be crucial for efficacy of HPV therapeutic vaccines. We report here that mice that received a single subcutaneous (s.c.) vaccination of an adjuvanted long synthetic HPV16 E7(1-98) polypeptide showed induction of 100% tumor protection against s.c. TC-1 tumors and that tumor regression was mainly provided by CD8 T cells. In vivo cytotoxic assay revealed high E7-specific cytolytic T lymphocytes activity in spleen and in genital draining lymph nodes (LN), and E7-specific CD8 T cells could be detected in GM by tetramer staining. More importantly, high-avidity E7-specific INF-gamma secreting CD8 T cells were induced not only in blood, spleen and LN but also in GM of vaccinated mice, thus providing evidence that a parenteral vaccination may be sufficient to provide regression of genital tumors. In addition, there was no correlation between the responses measured in blood with those measured in GM, highlighting the necessity and relevance to determine the immune responses in the mucosa where HPV-tumors reside.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our understanding of how genotype determines phenotype in primary dystonia is limited. Familial young-onset primary dystonia is commonly due to the DYT1 gene mutation. A critical question, given the 30% penetrance of clinical symptoms in DYT1 mutation carriers, is why the same genotype leads to differential clinical expression and whether non-DYT1 adult-onset primary dystonia, with and without family history share pathophysiological mechanisms with DYT1 dystonia. This study examines the relationship between dystonic phenotype and the DYT1 gene mutation by monitoring whole-brain structure using voxel-based morphometry. We acquired magnetic resonance imaging data of symptomatic and asymptomatic DYT1 mutation carriers, of non-DYT1 primary dystonia patients, with and without family history and control subjects with normal DYT1 alleles. By crossing the factors genotype and phenotype we demonstrate a significant interaction in terms of brain anatomy confined to the basal ganglia bilaterally. The explanation for this effect differs according to both gene and dystonia status: non-DYT1 adult-onset dystonia patients and asymptomatic DYT1 carriers have significantly larger basal ganglia compared to healthy subjects and symptomatic DYT1 mutation carriers. There is a significant negative correlation between severity of dystonia and basal ganglia size in DYT1 mutation carriers. We propose that differential pathophysiological and compensatory mechanisms lead to brain structure changes in non-DYT1 primary adult-onset dystonias and DYT1 gene carriers. Given the range of age of onset, there may be differential genetic modulation of brain development that in turn determines clinical expression. Alternatively, a DYT1 gene dependent primary defect of motor circuit development may lead to stress-induced remodelling of the basal ganglia and hence dystonia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: To understand cancer-related modifications to transcriptional programs requires detailed knowledge about the activation of signal-transduction pathways and gene expression programs. To investigate the mechanisms of target gene regulation by human estrogen receptor alpha (hERalpha), we combine extensive location and expression datasets with genomic sequence analysis. In particular, we study the influence of patterns of DNA occupancy by hERalpha on expression phenotypes. RESULTS: We find that strong ChIP-chip sites co-localize with strong hERalpha consensus sites and detect nucleotide bias near hERalpha sites. The localization of ChIP-chip sites relative to annotated genes shows that weak sites are enriched near transcription start sites, while stronger sites show no positional bias. Assessing the relationship between binding configurations and expression phenotypes, we find binding sites downstream of the transcription start site (TSS) to be equally good or better predictors of hERalpha-mediated expression as upstream sites. The study of FOX and SP1 cofactor sites near hERalpha ChIP sites shows that induced genes frequently have FOX or SP1 sites. Finally we integrate these multiple datasets to define a high confidence set of primary hERalpha target genes. CONCLUSION: Our results support the model of long-range interactions of hERalpha with the promoter-bound cofactor SP1 residing at the promoter of hERalpha target genes. FOX motifs co-occur with hERalpha motifs along responsive genes. Importantly we show that the spatial arrangement of sites near the start sites and within the full transcript is important in determining response to estrogen signaling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aquaporin 4 (AQP4) is a water channel involved in water movements across the cell membrane and is spatially organized on the cell surface in orthogonal array particles (OAPs). Its role in edema formation or resolution after stroke onset has been studied mainly at late time points. We have shown recently that its expression is rapidly induced after ischemia coinciding in time with an early swelling of the ischemic hemisphere. There are two isoforms of AQP4: AQP4-M1 and AQP4-M23. The ratio of these isoforms influences the size of the OAPs but the functional impact is not known. The role of the early induction of AQP4 is not yet known. Thrombin preconditioning in mice provides a useful model to study endogenous protective mechanisms. Using this model, we provide evidence for the first time that the early induction of AQP4 may contribute to limit the formation of edema and that the AQP4-M1 isoform is predominantly induced in the ischemic tissue at this time point. Although it prevents edema formation, the early induction of the AQP4 expression does not prevent the blood-brain barrier disruption, suggesting an effect limited to the prevention of edema formation possibly by removing of water from the tissue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The possible immunomodulatory role of polymorphonuclear leukocytes (PMN) in CD4+ T lymphocyte differentiation in mice was examined by studying the effect of transient depletion of PMN during the early phase after Leishmania major delivery. A single injection of the PMN-depleting NIMP-R14 mAb 6 h before infection with L. major prevented the early burst of IL-4 mRNA transcription otherwise occurring in the draining lymph node of susceptible BALB/c mice. Since this early burst of IL-4 mRNA transcripts had previously been shown to instruct Th2 differentiation in mice from this strain, we examined the effect of PMN depletion on Th subset differentiation at later time points after infection. The transient depletion of PMN in BALB/c mice was sufficient to inhibit Th2 cell development otherwise occurring after L. major infection. Decreased Th2 responses were paralleled with partial resolution of the footpad lesions induced by L. major. Furthermore, draining lymph node-derived CD4+ T cells from PMN-depleted mice remained responsive to IL-12 after L. major infection, unlike those of infected BALB/c mice receiving control Ab. PMN depletion had no effect when the NIMP-R14 mAb was injected 24 h postinfection. The protective effect of PMN depletion was shown to be IL-12 dependent, as concomitant neutralization of IL-12 reversed the protective effect of PMN depletion. These results suggest a role for an early wave of PMN in the development of the Th2 response characteristic of mice susceptible to infection with L. major.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brain spectrin, a membrane-related cytoskeletal protein, exists as two isoforms. Brain spectrin 240/235 is localized preferentially in the perikaryon and axon of neuronal cells and brain spectrin 240/235E is found essentially in the neuronal soma and dendrites and in glia (Riederer et al., 1986, J. Cell Biol., 102, 2088 - 2097). The sensory neurons in dorsal root ganglia, devoid of any dendrites, make a good tool to investigate such differential expression of spectrin isoforms. In this study expression and localization of both brain spectrin isoforms were analysed during early chicken dorsal root ganglia development in vivo and in culture. Both isoforms appeared at embryonic day 6. Brain spectrin 240/235 exhibited a transient increase during embryonic development and was first expressed in ventrolateral neurons. In ganglion cells in situ and in culture this spectrin type showed a somato - axonal distribution pattern. In contrast, brain spectrin 240/235E slightly increased between E6 and E15 and remained practically unchanged. It was localized mainly in smaller neurons of the mediodorsal area as punctate staining in the cytoplasm, was restricted exclusively to the ganglion cell perikarya and was absent from axons both in situ and in culture. This study suggests that brain spectrin 240/235 may contribute towards outgrowth, elongation and maintenance of axonal processes and that brain spectrin 240/235E seems to be exclusively involved in the stabilization of the cytoarchitecture of cell bodies in a selected population of ganglion cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: An increased mRNA expression of the genes coding for the extracellular matrix proteins neuroglycan C (NGC), interphotoreceptor matrix proteoglycan 2 (IMPG2), and CD44 antigen (CD44) has been observed during retinal degeneration in mice with a targeted disruption of the Rpe65 gene (Rpe65-/- mouse). To validate these data, we analyzed this differential expression in more detail by characterizing retinal NGC mRNA isoform and protein expression during disease progression. METHODS: Retinas from C57/Bl6 wild-type and Rpe65-/- mice, ranging 2 to 18 months of age, were used. NGC, IMPG2, and CD44 mRNA expression was assessed by oligonucleotide microarray, quantitative PCR, and in situ hybridization. Retinal NGC protein expression was analyzed by western blot and immunohistochemistry. RESULTS: As measured by quantitative PCR, mRNA expression of NGC and CD44 was induced by about 2 fold to 3 fold at all time points in Rpe65-/- retinas, whereas initially 4 fold elevated IMPG2 mRNA levels progressively declined. NGC and IMPG2 mRNAs were expressed in the ganglion cell layer, the inner nuclear layer, and at the outer limiting membrane. NGC mRNA was also detected in retinal pigment epithelium cells (RPE), where its mRNA expression was not induced during retinal degeneration. NGC-I was the major isoform detected in the retina and the RPE, whereas NGC-III was barely detected and NGC-II could not be assessed. NGC protein expression was at its highest levels on the apical membrane of the RPE. NGC protein levels were induced in retinas from 2- and 4-month-old Rpe65-/- mice, and an increased amount of the activity-cleaved NGC ectodomain containing an epidermal growth factor (EGF)-like domain was detected. CONCLUSIONS: During retinal degeneration in Rpe65-/- mice, NGC expression is induced in the neural retina, but not in the RPE, where NGC is expressed at highest levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: Previous studies have postulated that poststroke depression (PSD) might be related to cumulative vascular brain pathology rather than to the location and severity of a single macroinfarct. We performed a detailed analysis of all types of microvascular lesions and lacunes in 41 prospectively documented and consecutively autopsied stroke cases. METHODS: Only cases with first-onset depression <2 years after stroke were considered as PSD in the present series. Diagnosis of depression was established prospectively using DSM-IV criteria for major depression. Neuropathological evaluation included bilateral semiquantitative assessment of microvascular ischemic pathology and lacunes; statistical analysis included Fisher exact test, Mann-Whitney U test, and regression models. RESULTS: Macroinfarct site was not related to the occurrence of PSD for any of the locations studied. Thalamic and basal ganglia lacunes occurred significantly more often in PSD cases. Higher lacune scores in basal ganglia, thalamus, and deep white matter were associated with an increased PSD risk. In contrast, microinfarct and diffuse or periventricular demyelination scores were not increased in PSD. The combined lacune score (thalamic plus basal ganglia plus deep white matter) explained 25% of the variability of PSD occurrence. CONCLUSIONS: The cumulative vascular burden resulting from chronic accumulation of lacunar infarcts within the thalamus, basal ganglia, and deep white matter may be more important than single infarcts in the prediction of PSD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Differential protein labeling with 2-DE separation is an effective method for distinguishing differences in the protein composition of two or more protein samples. Here, we report on a sensitive infrared-based labeling procedure, adding a novel tool to the many labeling possibilities. Defined amounts of newborn and adult mouse brain proteins and tubulin were exposed to maleimide-conjugated infrared dyes DY-680 and DY-780 followed by 1- and 2-DE. The procedure allows amounts of less than 5 microg of cysteine-labeled protein mixtures to be detected (together with unlabeled proteins) in a single 2-DE step with an LOD of individual proteins in the femtogram range; however, co-migration of unlabeled proteins and subsequent general protein stains are necessary for a precise comparison. Nevertheless, the most abundant thiol-labeled proteins, such as tubulin, were identified by MS, with cysteine-containing peptides influencing the accuracy of the identification score. Unfortunately, some infrared-labeled proteins were no longer detectable by Western blots. In conclusion, differential thiol labeling with infrared dyes provides an additional tool for detection of low-abundant cysteine-containing proteins and for rapid identification of differences in the protein composition of two sets of protein samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CD40L is one of the key molecules bridging the activation of specific T cells and the maturation of professional and nonprofessional antigen-presenting cells including B cells. CD4(+) T cells have been regarded as the major T-cell subset that expresses CD40L upon cognate activation; however, we demonstrate here that a putative CD8(+) helper T-cell subset expressing CD40L is induced in human and murine CD8(+) T cells in vitro and in mice immunized with antigen-pulsed dendritic cells. IL-12 and STAT4-mediated signaling was the major instructive cytokine signal boosting the ability of CD8(+) T cells to express CD40L both in vitro and in vivo. Additionally, TCR signaling strength modulated CD40L expression in CD8(+) T cells after primary differentiation in vitro as well as in vivo. The induction of CD40L in CD8(+) T cells regulated by IL-12 and TCR signaling may enable CD8(+) T cells to respond autonomously of CD4(+) T cells. Thus, we propose that under proinflammatory conditions, a self-sustaining positive feedback loop could facilitate the efficient priming of T cells stimulated by high affinity peptide displaying APCs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The expression of the 240 ConA-binding glycoprotein (240 kDa), a marker of synaptic junctions isolated from the rat cerebellum, was studied by immunocytochemical techniques in forebrain and cerebellum from rat and chicken, and in chick dorsal root ganglia. Parallel studies were carried out either on tissue sections or in dissociated cell cultures. In all cases non neuronal cells were not immunostained. The tissue sections of cerebellum from rat and chick exhibited 240 kDa glycoprotein immunoreactivity, especially in the molecular layer, while the forebrain sections from rat and chick did not show any significant immunostaining. In contrast, in dissociated forebrain cell cultures, all neuronal cells expressed 240 kDa glycoprotein immunoreactivity, while glial cells remained totally unlabelled. In tissue sections of dorsal root ganglion (DRG), sensory neurons expressed the 240 kDa only after the embryonic day (E 10). A large number of small neurons in the dorsomedial part of DRG were immunostained with 240 kDa glycoprotein antiserum, whereas only a small number of neurons in the ventrolateral part of the ganglia displayed 240 kDa immunoreactivity. In dissociated DRG cells cultures (mixed or neuron-enriched DRG cell cultures) all the neuronal perikarya but not their processes were stained. These studies indicate that 240 kDa glycoprotein expression is completely modified in cultures of neurons of CNS or PNS since the antigen becomes synthetized in high amount by all cells independent of synapse formation. This demonstrates that the expression of 240 kDa is controlled by the cell environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lambert-Eaton myasthenic syndrome is a paraneoplastic syndrome that may reveal a primitive tumor. Neuroblastoma in children and small cell lung carcinoma in adults are the leading tumors revealed or expressed by paraneoplastic phenomena. The clinical neurologic manifestations of Lambert-Eaton myasthenic syndrome are muscular weakness, sleepiness, absence of reflexes, and dysautonomia. Neurologic manifestations are explained by the induction of an autoimmune response because of the presence of antigens that are expressed by the tumor. Neurologic paraneoplastic disorders may also be the result of toxicity of drugs, coagulopathy, infection, or metabolic diseases. We describe the case of a 13-month-old child with unusual neurologic symptoms because of the presence of an abdominal neuroblastoma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of GABA(B) receptors in sleep is still poorly understood. GHB (γ-hydroxybutyric acid) targets these receptors and is the only drug approved to treat the sleep disorder narcolepsy. GABA(B) receptors are obligate dimers comprised of the GABA(B2) subunit and either one of the two GABA(B1) subunit isoforms, GABA(B1a) and GABA(B1b). To better understand the role of GABA(B) receptors in sleep regulation, we performed electroencephalogram (EEG) recordings in mice devoid of functional GABA(B) receptors (1(-/-) and 2(-/-)) or lacking one of the subunit 1 isoforms (1a(-/-) and 1b(-/-)). The distribution of sleep over the day was profoundly altered in 1(-/-) and 2(-/-) mice, suggesting a role for GABA(B) receptors in the circadian organization of sleep. Several other sleep and EEG phenotypes pointed to a more prominent role for GABA(B1a) compared with the GABA(B1b) isoform. Moreover, we found that GABA(B1a) protects against the spontaneous seizure activity observed in 1(-/-) and 2(-/-) mice. We also evaluated the effects of the GHB-prodrug GBL (γ-butyrolactone) and of baclofen (BAC), a high-affinity GABA(B) receptor agonist. Both drugs induced a state distinct from physiological sleep that was not observed in 1(-/-) and 2(-/-) mice. Subsequent sleep was not affected by GBL whereas BAC was followed by a delayed hypersomnia even in 1(-/-) and 2(-/-) mice. The differential effects of GBL and BAC might be attributed to differences in GABA(B)-receptor affinity. These results also indicate that all GBL effects are mediated through GABA(B) receptors, although these receptors do not seem to be involved in mediating the BAC-induced hypersomnia.