355 resultados para serine lipidic metabolism
Resumo:
BACKGROUND AND PURPOSE: Lactate is central for the regulation of brain metabolism and is an alternative substrate to glucose after injury. Brain lactate metabolism in patients with subarachnoid hemorrhage has not been fully elucidated. METHODS: Thirty-one subarachnoid hemorrhage patients monitored with cerebral microdialysis (CMD) and brain oxygen (PbtO(2)) were studied. Samples with elevated CMD lactate (>4 mmol/L) were matched to PbtO(2) and CMD pyruvate and categorized as hypoxic (PbtO(2) <20 mm Hg) versus nonhypoxic and hyperglycolytic (CMD pyruvate >119 μmol/L) versus nonhyperglycolytic. RESULTS: Median per patient samples with elevated CMD lactate was 54% (interquartile range, 11%-80%). Lactate elevations were more often attributable to cerebral hyperglycolysis (78%; interquartile range, 5%-98%) than brain hypoxia (11%; interquartile range, 4%-75%). Mortality was associated with increased percentage of samples with elevated lactate and brain hypoxia (28% [interquartile range 9%-95%] in nonsurvivors versus 9% [interquartile range 3%-17%] in survivors; P=0.02) and lower percentage of elevated lactate and cerebral hyperglycolysis (13% [interquartile range, 1%-87%] versus 88% [interquartile range, 27%-99%]; P=0.07). Cerebral hyperglycolytic lactate production predicted good 6-month outcome (odds ratio for modified Rankin Scale score, 0-3 1.49; CI, 1.08-2.05; P=0.016), whereas increased lactate with brain hypoxia was associated with a reduced likelihood of good outcome (OR, 0.78; CI, 0.59-1.03; P=0.08). CONCLUSIONS: Brain lactate is frequently elevated in subarachnoid hemorrhage patients, predominantly because of hyperglycolysis rather than hypoxia. A pattern of increased cerebral hyperglycolytic lactate was associated with good long-term recovery. Our data suggest that lactate may be used as an aerobic substrate by the injured human brain.
Resumo:
The selective serotonin reuptake inhibitor fluoxetine is administered as a racemic mixture, and R- and S-fluoxetine are metabolized in the liver by N-demethylation to R- and S-norfluoxetine, respectively. R- and S-fluoxetine and S-norfluoxetine are equally potent selective serotonin reuptake inhibitors, but R-norfluoxetine is 20-fold less potent in this regard. Racemic fluoxetine and norfluoxetine are potent inhibitors of cytochrome P450 (CYP) 2D6 in vivo and in vitro and recent studies in vivo have shown that racemic fluoxetine is metabolized by CYP2D6. The primary aim of the present study was to investigate the stereoselective metabolism of fluoxetine and norfluoxetine by CYP2D6 in vivo. A single oral dose of fluoxetine (60 mg) was administered to six poor and six extensive metabolizers of sparteine. Blood samples were collected during 6 weeks for poor metabolizers and 3 weeks for extensive metabolizers. Once a week a sparteine test was performed. The R- and S-enantiomers of fluoxetine and norfluoxetine were determined by a stereoselective gas chromatography-mass spectroscopy method. In the poor metabolizers, the oral clearance of R- and S-fluoxetine was 3.0 l/h and 17 l/h, respectively, the corresponding values in the extensive metabolizers were 36 l/h and 40 l/h, respectively. For both enantiomers, the phenotype difference was statistically significant. In poor metabolizers, the elimination half-lives were 6.9 days and 17.4 days for R- and S-norfluoxetine, respectively, and in the extensive metabolizers it was 5.5 days for both enantiomers, a significant phenotypical difference only for S-norfluoxetine. For fluoxetine the elimination half-lives were 9.5 and 6.1 days in poor metabolizers for the R- and S-enantiomer, respectively. The corresponding values in the extensive metabolizers were 2.6 and 1.1 days, respectively. Also for this parameter, the differences were statistically significant. This study shows that CYP2D6 catalyses the metabolism of R- and S-fluoxetine and most likely the further metabolism of S-norfluoxetine but not of R-norfluoxetine.
Resumo:
BACKGROUND: The aim of this study was to assess the pharmacology, toxicity and activity of high-dose ifosfamide mesna +/- GM-CSF administered by a five-day continuous infusion at a total ifosfamide dose of 12-18 g/m2 in adult patients with advanced sarcomas. PATIENTS AND METHODS: Between January 1991 and October 1992 32 patients with advanced or metastatic sarcoma were entered the study. Twenty-seven patients were pretreated including twenty-three with prior ifosfamide at less than 8 g/m2 total dose/cycle. In 25 patients (27 cycles) extensive pharmacokinetic analyses were performed. RESULTS: The area under the plasma concentration-time curve (AUC) for ifosfamide increased linearly with dose while the AUC's of the metabolites measured in plasma by thin-layer chromatography did not increase with dose, particularly that of the active metabolite isophosphoramide mustard. Furthermore the AUC of the inactive carboxymetabolite did not increase with dose. Interpatient variability of pharmacokinetic parameters was high. Dose-limiting toxicity was myelosuppression at 18 g/m2 total dose with grade 4 neutropenia in five of six patients and grade 4 thrombocytopenia in four of six patients. Therefore the maximum tolerated dose was considered to be 18 g/m2 total dose. There was one CR and eleven PR in twenty-nine evaluable patients (overall response rate 41%). CONCLUSION: Both the activation and inactivation pathways of ifosfamide are non-linear and saturable at high-doses although the pharmacokinetics of the parent drug itself are dose linear. Ifosfamide doses greater than 14-16 g/m2 per cycle appear to result in a relative decrease of the active metabolite isophosphoramide mustard. These data suggest a dose-dependent saturation or even inhibition of ifosfamide metabolism by increasing high dose ifosfamide and suggest the need for further metabolic studies.
Resumo:
Secondary growth of the vasculature results in the thickening of plant structures and continuously produces xylem tissue, the major biological carbon sink. Little is known about the developmental control of this quantitative trait, which displays two distinct phases in Arabidopsis thaliana hypocotyls. The later phase of accelerated xylem expansion resembles the secondary growth of trees and is triggered upon flowering by an unknown, shoot-derived signal. We found that flowering-dependent hypocotyl xylem expansion is a general feature of herbaceous plants with a rosette growth habit. Flowering induction is sufficient to trigger xylem expansion in Arabidopsis. By contrast, neither flower formation nor elongation of the main inflorescence is required. Xylem expansion also does not depend on any particular flowering time pathway or absolute age. Through analyses of natural genetic variation, we found that ERECTA acts locally to restrict xylem expansion downstream of the gibberellin (GA) pathway. Investigations of mutant and transgenic plants indicate that GA and its signaling pathway are both necessary and sufficient to directly trigger enhanced xylogenesis. Impaired GA signaling did not affect xylem expansion systemically, suggesting that it acts downstream of the mobile cue. By contrast, the GA effect was graft transmissible, suggesting that GA itself is the mobile shoot-derived signal.
Resumo:
This review is part of a series of review articles on the metabolism of drugs and other xenobiotics published in Chemistry & Biodiversity. After a thorough discussion of metabolic reactions and their enzymes, this article focuses on genetically determined differences in drug and xenobiotic metabolism. After a short introduction on the causes for genetic differences, the first focus is on species differences in drug and xenobiotic metabolism. A major chapter is then dedicated to clinically relevant genetic polymorphisms in human drug metabolism and resultant ethnic differences. The last two chapters deal with sex-dependent differences in drug metabolism and personalized pharmacotherapy related to inter-individual differences in drug metabolism.
Resumo:
The epithelial sodium channel (ENaC) is critical for sodium and BP homeostasis. ENaC is regulated by Nedd4-2-mediated ubiquitylation, which leads to its internalization; this process can be reversed by deubiquitylation, which is regulated by the aldosterone-induced enzyme Usp2-45. In a second regulatory pathway, ENaC can be activated by luminal serine protease-mediated cleavage of its extracellular loops. Whether these two regulatory processes interact, however, is unknown. Here, in HEK293 cells stably transfected with ENaC, Usp2-45 interacted with ENaC, leading to deubiquitylation of the channel and stimulation of ENaC activity >20-fold. This was accompanied by a modest increase in cell surface expression of ENaC and by proteolytic cleavage of alphaENaC and gammaENaC at their extracellular loops. When endocytosis was inhibited with dominant negative dynamin (DynK44R), channel density and gammaENaC cleavage were increased, but alphaENaC cleavage and ENaC activity were not augmented. When Usp2-45 was coexpressed with DynK44R, both alphaENaC cleavage and activity were recovered. In summary, these data suggest that Usp2-45 deubiquitylation of ENaC enhances the proteolytic activation of both alphaENaC and gammaENaC, possibly by inducing a conformational change and by interfering with endocytosis, respectively
Resumo:
Acetaldehyde is a carcinogenic product of alcohol fermentation and metabolism in microbes associated with cancers of the upper digestive tract. In yeast acetaldehyde is a by-product of the pyruvate bypass that converts pyruvate into acetyl-Coenzyme A (CoA) during fermentation. The aims of our study were: (i) to determine the levels of acetaldehyde produced by Candida albicans in the presence of glucose in low oxygen tension in vitro; (ii) to analyse the expression levels of genes involved in the pyruvate-bypass and acetaldehyde production; and (iii) to analyse whether any correlations exist between acetaldehyde levels, alcohol dehydrogenase enzyme activity or expression of the genes involved in the pyruvate-bypass. Candida albicans strains were isolated from patients with oral squamous cell carcinoma (n = 5), autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) patients with chronic oral candidosis (n = 5), and control patients (n = 5). The acetaldehyde and ethanol production by these isolates grown under low oxygen tension in the presence of glucose was determined, and the expression of alcohol dehydrogenase (ADH1 and ADH2), pyruvate decarboxylase (PDC11), aldehyde dehydrogenase (ALD6) and acetyl-CoA synthetase (ACS1 and ACS2) and Adh enzyme activity were analysed. The C. albicans isolates produced high levels of acetaldehyde from glucose under low oxygen tension. The acetaldehyde levels did not correlate with the expression of ADH1, ADH2 or PDC11 but correlated with the expression of down-stream genes ALD6 and ACS1. Significant differences in the gene expressions were measured between strains isolated from different patient groups. Under low oxygen tension ALD6 and ACS1, instead of ADH1 or ADH2, appear the most reliable indicators of candidal acetaldehyde production from glucose.
Resumo:
Levels of the enzymes that produce wound response mediators have to be controlled tightly in unwounded tissues. The Arabidopsis (Arabidopsis thaliana) fatty acid oxygenation up-regulated8 (fou8) mutant catalyzes high rates of alpha -linolenic acid oxygenation and has higher than wild-type levels of the alpha -linolenic acid-derived wound response mediator jasmonic acid (JA) in undamaged leaves. fou8 produces a null allele in the gene SAL1 (also known as FIERY1 or FRY1). Overexpression of the wild-type gene product had the opposite effect of the null allele, suggesting a regulatory role of SAL1 acting in JA synthesis. The biochemical phenotypes in fou8 were complemented when the yeast (Saccharomyces cerevisiae) sulfur metabolism 3'(2'), 5'-bisphosphate nucleotidase MET22 was targeted to chloroplasts in fou8. The data are consistent with a role of SAL1 in the chloroplast-localized dephosphorylation of 3'-phospho-5'-adenosine phosphosulfate to 5'-adenosine phosphosulfate or in a closely related reaction (e.g. 3',5'-bisphosphate dephosphorylation). Furthermore, the fou8 phenotype was genetically suppressed in a triple mutant (fou8 apk1 apk2) affecting chloroplastic 3'-phospho-5'-adenosine phosphosulfate synthesis. These results show that a nucleotide component of the sulfur futile cycle regulates early steps of JA production and basal JA levels.
Resumo:
Progressive destruction of the insulin-producing beta cells in nonobese diabetic mice is observed after infiltration of the pancreas with lymphocytes [Makino, S., Kunimoto, K., Muraoka, Y., Mizushima, Y., Katagiri, K. &amp; Tochino, Y. (1980) Exp. Anim. (Tokyo) 29, 1-13]. We show that the genes for tumor necrosis factor alpha and granzyme A, a serine protease associated with cytoplasmic granules of cytotoxic cells, are expressed during the development of spontaneous diabetes mellitus in the nonobese diabetic mouse. Granzyme A-positive cells are found both in and surrounding the islets, implying induction prior to islet infiltration. Tumor necrosis factor alpha expression is exclusively observed in the intra-islet infiltrate, predominantly in lymphocytes adjacent to insulin-producing beta cells, the targets of the autoimmune destruction, implying that tumor necrosis factor alpha expression is induced locally--i.e., in the islet. A considerable portion of cells expressing tumor necrosis factor alpha appear to be CD4+ T cells. This T-cell subset was previously shown to be necessary for development of the disease. Thus, these findings may be important for understanding the pathogenesis of autoimmune diabetes mellitus and potentially also for that of other T-cell-mediated autoimmune diseases.
Resumo:
Bone homeostasis is a well-balanced process that is largely dependent on the contribution of both bone-forming osteoblasts and bone-resorbing osteoclasts. A new study (Wan et al., 2007) suggests a previously unsuspected role for the transcription factor PPARgamma in promoting bone progenitors to the osteoclastic lineage.
Resumo:
The major envelope antigen of vaccinia virus is an acylated protein of M(r) 37,000 (p37K) which is required for the formation of extracellular enveloped virions (EEV). Despite its important role in the wrapping process, p37K has not been studied in much detail. In order to better characterize this protein we have undertaken a detailed biochemical analysis. Sodium carbonate treatment showed that p37K is tightly bound to the viral envelope. Its resistance to proteinase K digestion indicates that it is not exposed on the surface of EEV but lines the inner side of the envelope. Since p37K does not contain a signal peptide characteristic of most membrane proteins, we examined the possibility that the protein acquires its membrane affinity through the addition of fatty acids. Indeed, Triton X-114 phase partitioning experiments demonstrated that p37K is hydrophobic when acylated, but hydrophilic in the absence of fatty acids. Three other viral proteins have been shown to be required for virus envelopment and release from the host cell and we therefore tested whether p37K interacts with viral proteins. In EEV and in absence of reducing agents, an 80-kDa complex reacting with an anti-37K antiserum was found. Analysis of this complex showed that it most likely consists of a p37K homodimer. Interestingly, only a small amount of p37K occurs as a complex, most of it is present in the viral envelope as monomers.
Resumo:
Several tumor necrosis factor receptor (TNFR) family members activate both the classical and the alternative NF-κB pathways. However, how a single receptor engages these two distinct pathways is still poorly understood. Using lymphotoxin β receptor (LTβR) as a prototype, we showed that activation of the alternative, but not the classical, NF-κB pathway relied on internalization of the receptor. Further molecular analyses revealed a specific cytosolic region of LTβR essential for its internalization, TRAF3 recruitment, and p100 processing. Interestingly, we found that dynamin-dependent, but clathrin-independent, internalization of LTβR appeared to be required for the activation of the alternative, but not the classical, NF-κB pathway. In vivo, ligand-induced internalization of LTβR in mesenteric lymph node stromal cells correlated with induction of alternative NF-κB target genes. Thus, our data shed light on LTβR cellular trafficking as a process required for specific biological functions of NF-κB.
Resumo:
Regulation of renal Na(+) transport is essential for controlling blood pressure, as well as Na(+) and K(+) homeostasis. Aldosterone stimulates Na(+) reabsorption by the Na(+)-Cl(-) cotransporter (NCC) in the distal convoluted tubule (DCT) and by the epithelial Na(+) channel (ENaC) in the late DCT, connecting tubule, and collecting duct. Aldosterone increases ENaC expression by inhibiting the channel's ubiquitylation and degradation; aldosterone promotes serum-glucocorticoid-regulated kinase SGK1-mediated phosphorylation of the ubiquitin-protein ligase Nedd4-2 on serine 328, which prevents the Nedd4-2/ENaC interaction. It is important to note that aldosterone increases NCC protein expression by an unknown post-translational mechanism. Here, we present evidence that Nedd4-2 coimmunoprecipitated with NCC and stimulated NCC ubiquitylation at the surface of transfected HEK293 cells. In Xenopus laevis oocytes, coexpression of NCC with wild-type Nedd4-2, but not its catalytically inactive mutant, strongly decreased NCC activity and surface expression. SGK1 prevented this inhibition in a kinase-dependent manner. Furthermore, deficiency of Nedd4-2 in the renal tubules of mice and in cultured mDCT(15) cells upregulated NCC. In contrast to ENaC, Nedd4-2-mediated inhibition of NCC did not require the PY-like motif of NCC. Moreover, the mutation of Nedd4-2 at either serine 328 or 222 did not affect SGK1 action, and mutation at both sites enhanced Nedd4-2 activity and abolished SGK1-dependent inhibition. Taken together, these results suggest that aldosterone modulates NCC protein expression via a pathway involving SGK1 and Nedd4-2 and provides an explanation for the well-known aldosterone-induced increase in NCC protein expression.
Resumo:
Rationale The pharmacological actions of most antidepressants are ascribed to the modulation of serotonergic and/or noradrenergic transmission in the brain. During therapeutic treatment for major depression, fluoxetine, one of the most commonly prescribed selective serotonin reuptake inhibitor (SSRI) antidepressants, accumulates in the brain, suggesting that fluoxetine may interact with additional targets. In this context, there is increasing evidence that astrocytes are involved in the pathophysiology of major depression.Objectives The aim of this study was to examine the effects of fluoxetine on the expression of neurotrophic/growth factors that have antidepressant properties and on glucose metabolism in cultured cortical astrocytes.Results Treatment of astrocytes with fluoxetine and paroxetine, another SSRI antidepressant, upregulated brain-derived neurotrophic factor (BDNF), vascular endothelial growth factor (VEGF), and VGF mRNA expression. In contrast, the tricyclic antidepressants desipramine and imipramine did not affect the expression of these neurotrophic/growth factors. Analysis of the effects of fluoxetine on glucose metabolism revealed that fluoxetine reduces glycogen levels and increases glucose utilization and lactate release by astrocytes. Similar data were obtained with paroxetine, whereas imipramine and desipramine did not regulate glucose metabolism in this glial cell population. Our results also indicate that the effects of fluoxetine and paroxetine on glucose utilization, lactate release, and expression of BDNF, VEGF, and VGF are not mediated by serotonin-dependent mechanisms.Conclusions These data suggest that, by increasing the expression of specific astrocyte-derived neurotrophic factors and lactate release from astrocytes, fluoxetine may contribute to normalize the trophic and metabolic support to neurons in major depression.
Resumo:
Analysis of genetically engineered mice deficient in cell cycle regulators, including E2F1, cdk4, and pRB, showed that the major phenotypes are metabolic perturbations. These key cell cycle regulators contribute to lipid synthesis, glucose production, insulin secretion, and glycolytic metabolism. It has been shown that deregulation of these pathways can lead to metabolic perturbations and related metabolic diseases, such as obesity and type II diabetes. The cyclin-cdk-Rb-E2F1 pathway regulates adipogenesis in addition to its well-described roles in cell cycle regulation and cancer. It was also shown that E2F1 directly participates in the regulation of pancreatic growth and function. Similarly, cyclin D3, cdk4, and cdk9 are also adipogenic factors with strong effects on whole organism metabolism. These examples support the emerging notion that cell cycle regulatory proteins also modulate metabolic processes. These cell cycle regulators are activated by insulin and glucose, even in non-proliferating cells. Most importantly, these cell cycle regulators trigger the adaptive metabolic switch that normal and cancer cells require in order to proliferate. These changes include increased lipid synthesis, decreased oxidative metabolism, and increased glycolytic metabolism. In summary, these factors are essential regulators of anabolic biosynthetic processes, blocking at the same time oxidative and catabolic pathways, which is reminiscent of cancer cell metabolism.