224 resultados para Repeat moves
Resumo:
Upward migration of plant species due to climate change has become evident in several European mountain ranges. It is still, however, unclear whether certain plant traits increase the probability that a species will colonize mountain summits or vanish, and whether these traits differ with elevation. Here, we used data from a repeat survey of the occurrence of plant species on 120 summits, ranging from 2449 to 3418 m asl, in south-eastern Switzerland to identify plant traits that increase the probability of colonization or extinction in the 20th century. Species numbers increased across all plant traits considered. With some traits, however, numbers increased proportionally more. The most successful colonizers seemed to prefer warmer temperatures and well-developed soils. They produced achene fruits and/or seeds with pappus appendages. Conversely, cushion plants and species with capsule fruits were less efficient as colonizers. Observed changes in traits along the elevation gradient mainly corresponded to the natural distribution of traits. Extinctions did not seem to be clearly related to any trait. Our study showed that plant traits varied along both temporal and elevational gradients. While seeds with pappus seemed to be advantageous for colonization, most of the trait changes also mirrored previous gradients of traits along elevation and hence illustrated the general upward migration of plant species. An understanding of the trait characteristics of colonizing species is crucial for predicting future changes in mountain vegetation under climate change.
Resumo:
MRI has evolved into an important diagnostic technique in medical imaging. However, reliability of the derived diagnosis can be degraded by artifacts, which challenge both radiologists and automatic computer-aided diagnosis. This work proposes a fully-automatic method for measuring image quality of three-dimensional (3D) structural MRI. Quality measures are derived by analyzing the air background of magnitude images and are capable of detecting image degradation from several sources, including bulk motion, residual magnetization from incomplete spoiling, blurring, and ghosting. The method has been validated on 749 3D T(1)-weighted 1.5T and 3T head scans acquired at 36 Alzheimer's Disease Neuroimaging Initiative (ADNI) study sites operating with various software and hardware combinations. Results are compared against qualitative grades assigned by the ADNI quality control center (taken as the reference standard). The derived quality indices are independent of the MRI system used and agree with the reference standard quality ratings with high sensitivity and specificity (>85%). The proposed procedures for quality assessment could be of great value for both research and routine clinical imaging. It could greatly improve workflow through its ability to rule out the need for a repeat scan while the patient is still in the magnet bore.
Resumo:
The human T-cell leukemia virus type 1 (HTLV-1) Tax protein activates viral transcription through three 21-bp repeats located in the U3 region of the HTLV-1 long terminal repeat and called Tax-responsive elements (TxREs). Each TxRE contains nucleotide sequences corresponding to imperfect cyclic AMP response elements (CRE). In this study, we demonstrate that the bZIP transcriptional factor CREB-2 is able to bind in vitro to the TxREs and that CREB-2 binding to each of the 21-bp motifs is enhanced by Tax. We also demonstrate that Tax can weakly interact with CREB-2 bound to a cellular palindromic CRE motif such as that found in the somatostatin promoter. Mutagenesis of Tax and CREB-2 demonstrates that both N- and C-terminal domains of Tax and the C-terminal region of CREB-2 are required for direct interaction between the two proteins. In addition, the Tax mutant M47, defective for HTLV-1 activation, is unable to form in vitro a ternary complex with CREB-2 and TxRE. In agreement with recent results suggesting that Tax can recruit the coactivator CREB-binding protein (CBP) on the HTLV-1 promoter, we provide evidence that Tax, CREB-2, and CBP are capable of cooperating to stimulate viral transcription. Taken together, our data highlight the major role played by CREB-2 in Tax-mediated transactivation.
Resumo:
In order to identify the main social policy tools that can efficiently combat working poverty, it is essential to identify its main driving factors. More importantly, this work shows that all poverty factors identified in the literature have a direct bearing on working households through three mechanisms, namely being badly paid, having a below-average workforce participation, and high needs. One of the main purposes of this work is to assess whether the policies put forward in the specialist literature as potentially efficient really work. This is done in two ways. A first empirical prong provides an evaluation of the employment and antipoverty effects of these instruments, based on a meta-analysis of four instruments: minimum wages, tax credits for working households, family cash benefits and childcare policies. The second prong relies on a broader framework based on welfare regimes. This work contributes to the identification of a typology of welfare regimes that is suitable for the analysis of working poverty, and four countries are chosen to exemplify each regime: the US, Sweden, Germany, and Spain. It then moves on to show that the weight of the three working poverty mechanisms varies widely from one welfare regime to the other. This second empirical contribution clearly shows that there is no "one-size-fits-all" approach to the fight against working poverty. But none of this is possible without having properly defined the phenomenon. Most of the literature is characterized by a "definitional chaos" that probably does more harm than good to social policy efforts. Hence, this book provides a conceptual reflection pleading for the use of a very encompassing definition of being in work. It shows that "the working poor" is too broad a category to be used for meaningful academic or policy discussion, and that a distinction must be operated between different categories of the working poor. Failing to acknowledge this prevents the design of an efficient policy mix.
Resumo:
PURPOSE: Acute pyelonephritis is a common condition in children, and can lead to renal scarring. The aim of this study was to analyze the progression of renal scarring with time and its impact on renal growth. MATERIALS AND METHODS: A total of 50 children who had renal scarring on dimercapto-succinic acid scan 6 months after acute pyelonephritis underwent a repeat scan 3 years later. Lesion changes were evaluated by 3 blinded observers, and were classified as no change, partial resolution or complete disappearance. Renal size at time of acute pyelonephritis and after 3 years was obtained by ultrasound, and renal growth was assessed comparing z-score for age between the 2 measures. Robust linear regression was used to identify determinants of renal growth. RESULTS: At 6 months after acute pyelonephritis 88 scars were observed in 100 renal units. No change was observed in 27%, partial resolution in 63% and complete disappearance in 9% of lesions. Overall, 72% of lesions improved. Increased number of scars was associated with high grade vesicoureteral reflux (p = 0.02). Multivariate analysis showed that the number of scars was the most important parameter leading to decreased renal growth (CI -1.05 to -0.35, p <0.001), and with 3 or more scars this finding was highly significant on univariate analysis (-1.59, CI -2.10 to -1.09, p <0.0001). CONCLUSIONS: Even 6 months after acute pyelonephritis 72% of dimercapto-succinic acid defects improved, demonstrating that some of the lesions may be not definitive. The number of scars was significantly associated with loss of renal growth at 3 years.
Resumo:
We have shown that indels in gp120 V4 are associated to the presence of duplicated and palindromic sequences, suggesting that they may be produced by strand-slippage misalignment mechanism. Indels in V4 involved region-specific duplications 9 to 15 bp long, and repeats of various lengths, associated to trinucleotides AAT. No duplications were found in V3 and C3. The frequency of palindromic sequences in individual genes was found to be significantly higher in gp120 (p < or = 3.00E-7), and significantly lower in Tat (p < or = 9.00E-7) than the average frequency calculated over the full genome. The finding of elements of misalignment in association with indels in V4 suggests that these mutations may occur in proviral DNA after integration of HIV into the host genome. It also implies that occurrence of large indels in gp120 is not random but is directed by the presence and distribution of elements of misalignment in the HIV genome.
Resumo:
Colorectal cancers exhibit a high telomerase activity, usually correlated with the hypermethylation of the promoter of its hTERT catalytic subunit. Although telomerase is not expressed in normal tissue, certain proliferative somatic cells such as intestinal crypt cells have demonstrated telomerase activity. The aim of this study was to determine whether a correlation exists between telomerase activity, levels of hTERT methylation and telomere length in tumoral and normal colorectal tissues. Tumor, transitional and normal tissues were obtained from 11 patients with a colorectal cancer. After bisulfite modification of genomic DNA, hTERT promoter methylation was analyzed by methylation-sensitive single-strand conformation analysis (MS-SSCA). Telomerase activity and telomere length were measured by a fluorescent-telomeric repeat amplification protocol assay and by Southern blotting, respectively. A significant increase of hTERT methylation and telomerase activity, and a reduction of the mean telomere length were observed in the tumor tissues compared to the transitional and normal mucosa. In the transitional and normal mucosa, telomerase activity was significantly lower than that in tumor tissues, even with high levels of hTERT methylation. Nevertheless, hTERT promoter methylation was not linearly correlated to telomerase activity. These data indicate that hTERT promoter methylation is a necessary event for hTERT expression, as is telomerase activity. However, methylation is not sufficient for hTERT activation, particularly in normal colorectal cells.
Resumo:
Background Ulnar nerve decompression at the elbow traditionally requires regional or general anesthesia. We wished to assess the feasibility of performing ulnar nerve decompression and transposition at the elbow under local anesthesia. Methods We examined retrospectively the charts of 50 consecutive patients having undergone ulnar nerve entrapment surgery either under general or local anesthesia. Patients were asked to estimate pain on postoperative days 1 and 7 and satisfaction was assessed at 1 year. Results On day 1, pain was comparable among all groups. On day 7, pain scores were twice as high when transposition was performed under general anesthesia when compared with local anesthesia. Patient satisfaction was slightly increased in the local anesthesia group. These patients were significantly more willing to repeat the surgery. Conclusion Ulnar nerve decompression and transposition at the elbow can be performed under local anesthesia without added morbidity when compared with general anesthesia.
Resumo:
As modern molecular biology moves towards the analysis of biological systems as opposed to their individual components, the need for appropriate mathematical and computational techniques for understanding the dynamics and structure of such systems is becoming more pressing. For example, the modeling of biochemical systems using ordinary differential equations (ODEs) based on high-throughput, time-dense profiles is becoming more common-place, which is necessitating the development of improved techniques to estimate model parameters from such data. Due to the high dimensionality of this estimation problem, straight-forward optimization strategies rarely produce correct parameter values, and hence current methods tend to utilize genetic/evolutionary algorithms to perform non-linear parameter fitting. Here, we describe a completely deterministic approach, which is based on interval analysis. This allows us to examine entire sets of parameters, and thus to exhaust the global search within a finite number of steps. In particular, we show how our method may be applied to a generic class of ODEs used for modeling biochemical systems called Generalized Mass Action Models (GMAs). In addition, we show that for GMAs our method is amenable to the technique in interval arithmetic called constraint propagation, which allows great improvement of its efficiency. To illustrate the applicability of our method we apply it to some networks of biochemical reactions appearing in the literature, showing in particular that, in addition to estimating system parameters in the absence of noise, our method may also be used to recover the topology of these networks.
Resumo:
The Polochic-Motagua fault systems (PMFS) are part of the sinistral transform boundary between the North American and Caribbean plates. To the west, these systems interact with the subduction zone of the Cocos plate, forming a subduction-subduction-transform triple junction. The North American plate moves westward relative to the Caribbean plate. This movement does not affect the geometry of the subducted Cocos plate, which implies that deformation is accommodated entirely in the two overriding plates. Structural data, fault kinematic analysis, and geomorphic observations provide new elements that help to understand the late Cenozoic evolution of this triple junction. In the Miocene, extension and shortening occurred south and north of the Motagua fault, respectively. This strain regime migrated northward to the Polochic fault after the late Miocene. This shift is interpreted as a ``pull-up'' of North American blocks into the Caribbean realm. To the west, the PMFS interact with a trench-parallel fault zone that links the Tonala fault to the Jalpatagua fault. These faults bound a fore-arc sliver that is shared by the two overriding plates. We propose that the dextral Jalpatagua fault merges with the sinistral PMFS, leaving behind a suturing structure, the Tonala fault. This tectonic ``zipper'' allows the migration of the triple junction. As a result, the fore-arc sliver comes into contact with the North American plate and helps to maintain a linear subduction zone along the trailing edge of the Caribbean plate. All these processes currently make the triple junction increasingly diffuse as it propagates eastward and inland within both overriding plates.
Resumo:
Tandemly repeated insertion sequence IS21, located on a suicide plasmid, promoted replicon fusion with bacteriophage lambda in vitro in the presence of ATP. This reaction was catalyzed in a cell extract containing the 45-kDa IstA protein (cointegrase) and the 30-kDa IstB helper protein of IS21 after both proteins had been overproduced in Escherichia coli. Without IstB, replicon fusion was inefficient and did not produce the 4-bp target duplications typical of IS21.
Resumo:
Dominant missense mutations in FLNB, encoding the actin-cross linking protein filamin B (FLNB), cause a broad range of skeletal dysplasias with varying severity by an unknown mechanism. Here these FLNB mutations are shown to cluster in exons encoding the actin-binding domain (ABD) and filamin repeats surrounding the flexible hinge 1 region of the FLNB rod domain. Despite being positioned in domains that bind actin, it is unknown if these mutations perturb cytoskeletal structure. Expression of several full-length FLNB constructs containing ABD mutations resulted in the appearance of actin-containing cytoplasmic focal accumulations of the substituted protein to a degree that was correlated with the severity of the associated phenotypes. In contrast, study of mutations leading to substitutions in the FLNB rod domain that result in the same phenotypes as ABD mutations demonstrated that with only one exception disease-associated substitutions, surrounding hinge 1 demonstrated no tendency to form actin-filamin foci. The exception, a substitution in filamin repeat 6, lies within a region previously implicated in filamin-actin binding. These data are consistent with mutations in the ABD conferring enhanced actin-binding activity but suggest that substitutions affecting repeats near the flexible hinge region of FLNB precipitate the same phenotypes through a different mechanism.
Resumo:
While there is evidence that the two ubiquitously expressed thyroid hormone (T3) receptors, TRalpha1 and TRbeta1, have distinct functional specificities, the mechanism by which they discriminate potential target genes remains largely unexplained. In this study, we demonstrate that the thyroid hormone response elements (TRE) from the malic enzyme and myelin basic protein genes (METRE and MBPTRE) respectively, are not functionally equivalent. The METRE, which is a direct repeat motif with a 4-base pair gap between the two half-site hexamers binds thyroid hormone receptor as a heterodimer with 9-cis-retinoic acid receptor (RXR) and mediates a high T3-dependent activation in response to TRalpha1 or TRbeta1 in NIH3T3 cells. In contrast, the MBPTRE, which consists of an inverted palindrome formed by two hexamers spaced by 6 base pairs, confers an efficient transactivation by TRbeta1 but a poor transactivation by TRalpha1. While both receptors form heterodimers with RXR on MBPTRE, the poor transactivation by TRalpha1 correlates also with its ability to bind efficiently as a monomer. This monomer, which is only observed with TRalpha1 bound to MBPTRE, interacts neither with N-CoR nor with SRC-1, explaining its functional inefficacy. However, in Xenopus oocytes, in which RXR proteins are not detectable, the transactivation mediated by TRalpha1 and TRbeta1 is equivalent and independent of a RXR supply, raising the question of the identity of the thyroid hormone receptor partner in these cells. Thus, in mammalian cells, the binding characteristics of TRalpha1 to MBPTRE (i.e. high monomer binding efficiency and low transactivation activity) might explain the particular pattern of T3 responsiveness of MBP gene expression during central nervous system development.
Resumo:
Combinatorial optimization involves finding an optimal solution in a finite set of options; many everyday life problems are of this kind. However, the number of options grows exponentially with the size of the problem, such that an exhaustive search for the best solution is practically infeasible beyond a certain problem size. When efficient algorithms are not available, a practical approach to obtain an approximate solution to the problem at hand, is to start with an educated guess and gradually refine it until we have a good-enough solution. Roughly speaking, this is how local search heuristics work. These stochastic algorithms navigate the problem search space by iteratively turning the current solution into new candidate solutions, guiding the search towards better solutions. The search performance, therefore, depends on structural aspects of the search space, which in turn depend on the move operator being used to modify solutions. A common way to characterize the search space of a problem is through the study of its fitness landscape, a mathematical object comprising the space of all possible solutions, their value with respect to the optimization objective, and a relationship of neighborhood defined by the move operator. The landscape metaphor is used to explain the search dynamics as a sort of potential function. The concept is indeed similar to that of potential energy surfaces in physical chemistry. Borrowing ideas from that field, we propose to extend to combinatorial landscapes the notion of the inherent network formed by energy minima in energy landscapes. In our case, energy minima are the local optima of the combinatorial problem, and we explore several definitions for the network edges. At first, we perform an exhaustive sampling of local optima basins of attraction, and define weighted transitions between basins by accounting for all the possible ways of crossing the basins frontier via one random move. Then, we reduce the computational burden by only counting the chances of escaping a given basin via random kick moves that start at the local optimum. Finally, we approximate network edges from the search trajectory of simple search heuristics, mining the frequency and inter-arrival time with which the heuristic visits local optima. Through these methodologies, we build a weighted directed graph that provides a synthetic view of the whole landscape, and that we can characterize using the tools of complex networks science. We argue that the network characterization can advance our understanding of the structural and dynamical properties of hard combinatorial landscapes. We apply our approach to prototypical problems such as the Quadratic Assignment Problem, the NK model of rugged landscapes, and the Permutation Flow-shop Scheduling Problem. We show that some network metrics can differentiate problem classes, correlate with problem non-linearity, and predict problem hardness as measured from the performances of trajectory-based local search heuristics.
Resumo:
Background: To determine whether misalignment structures such as duplications, repeats, and palindromes are associated to insertions/deletions (indels) in gp120, indicating that indels are indeed frameshift mutations generated by DNA misalignment mechanism. Methods: Cloning and sequencing of a fragment of HIV-1 gp120 spanning C2-C4 derived from plasma RNA in 12 patients with early chronic disease and naïve to antiretroviral therapy. Results: Indels in V4 involved always insertion and deletion of duplicated nucleotide segments, and AAT repeats, and were associated to the presence of palindromic sequences. No duplications were detected in V3 and C3. Palindromic sequences occurred with similar frequencies in V3, C3 and V4; the frequency of palindromes in individual genes was found to be significantly higher in structural (gp120, p ≤ 3.00E-7) and significantly lower in regulatory (Tat, p ≤ 9.00E-7) genes, as compared to the average frequency calculated over the full genome. Discussion: Indels in V4 are associated to misalignment structures (i.e. duplications repeat and palindromes) indicating DNA misalignment as the mechanism underlying length variation in V4. The finding that indels in V4 are caused by DNA misalignment has some very important implications: 1) indels in V4 are likely to occur in proviral DNA (and not in RNA), after integration of HIV into the host genome; 2) they are likely to occur as progressive modifications of the early founder virus during chronic infection, as more and more cells get infected; 3) frameshift mutations involving any number of base pairs are likely to occur evenly across gp120; however, only those mutants carrying a functional gp120 (indels as multiples of three base pairs) will be able to perpetuate the virus cycle and to keep spreading through the population.