210 resultados para Receptors, Lipoprotein


Relevância:

20.00% 20.00%

Publicador:

Resumo:

24S- and 27-hydroxycholesterol are obligatory intermediates of cholesterol catabolism and play an important role in the maintenance of whole-body cholesterol homeostasis. Using an HPLC-MS method for oxysterol quantification, the distribution of esterified and unesterified oxysterols in lipoprotein subfractions as well as the influence of daytime, food intake and menstrual cycle on oxysterol concentrations were investigated in healthy volunteers. Moreover, reference intervals for 24S- and 27-hydroxycholesterol in plasma as well as the corresponding levels for 27-hydroxycholesterol in the HDL subfraction were established in 100 healthy volunteers. Both circulating oxysterols are mainly transported in association with HDL and LDL--primarily in the esterified form. No significant diurnal changes and no variations during menstrual cycle of either absolute or cholesterol-related plasma levels were detected. In contrast to 24S-hydroxycholesterol in plasma and 27-hydroxycholesterol in the HDL subfraction, the 95% reference intervals of 27-hydroxycholesterol both in plasma and the non-HDL subfraction were higher in males than in females. The concentrations of 27-hydroxycholesterol in plasma and the non-HDL subfraction showed strong positive correlations with the concentrations of cholesterol, non-HDL cholesterol and triglycerides. Our data on the lipoprotein distribution of oxysterols as well as on their intra- and inter-individual variation set the stage for future clinical studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemosensory receptor gene families encode divergent proteins capable of detecting a huge diversity of environmental stimuli that are constantly changing over evolutionary time as organisms adapt to distinct ecological niches. While olfaction is dedicated to the detection of volatile compounds, taste is key to assess food quality for nutritional value and presence of toxic substances. The sense of taste also provides initial signals to mediate endocrine regulation of appetite and food metabolism and plays a role in kin recognition. The fruit fly Drosophila melanogaster is a very good model for studying smell and taste because these senses are very important in insects and because a broad variety of genetic tools are available in Drosophila. Recently, a family of 66 chemosensory receptors, the Ionotropic Receptors (IRs) was described in fruit flies. IRs are distantly related to ionotropic glutamate receptors (iGluRs), but their evolutionary origin from these synaptic receptors is unclear. While 16 IRs are expressed in the olfactory system, nothing is known about the other members of this repertoire. In this thesis, I describe bioinformatic, expression and functional analyses of the IRs aimed at understanding how these receptors have evolved, and at characterising the role of the non-olfactory IRs. I show that these have emerged at the basis of the protostome lineage and probably have acquired their sensory function very early. Moreover, although several IRs are conserved across insects, there are rapid and dramatic changes in the size and divergence of IR repertoires across species. I then performed a comprehensive analysis of IR expression in the larva of Drosophila melanogaster, which is a good model to study taste and feeding mechanisms as it spends most of its time eating or foraging. I found that most of the divergent members of the IR repertoire are expressed in both peripheral and internal gustatory neurons, suggesting that these are involved in taste perception. Finally, through the establishment of a new neurophysiological assay in larvae, I identified for the first time subsets of IR neurons that preferentially detect sugars and amino acids, indicating that IRs might be involved in sensing these compounds. Together, my results indicate that IRs are an evolutionarily dynamic and functionally versatile family of receptors. In contrast to the olfactory IRs that are well-conserved, gustatory IRs are rapidly evolving species-specific receptors that are likely to be involved in detecting a wide variety of tastants. - La plupart des animaux possèdent de grandes familles de récepteurs chimiosensoriels dont la fonction est de détecter l'immense diversité de composés chimiques présents dans l'environnement. Ces récepteurs évoluent en même temps que les organismes s'adaptent à leur écosystème. Il existe deux manières de percevoir ces signaux chimiques : l'olfaction et le goût. Alors que le système olfactif perçoit les composés volatiles, le sens du goût permet d'évaluer, par contact, la qualité de la nourriture, de détecter des substances toxiques et de réguler l'appétit et le métabolisme. L'un des organismes modèles les plus pertinents pour étudier le sens du goût est le stade larvaire de la mouche du vinaigre Drosophila melanogaster. En effet, la principale fonction du stade larvaire est de trouver de la nourriture et de manger. De plus, il est possible d'utiliser tous les outils génétiques développés chez la drosophile. Récemment, une nouvelle famille de 66 récepteurs chimiosensoriels appelés Récepteurs Ionotropiques (IRs) a été découverte chez la drosophile. Bien que leur orogine soit peu claire, ces récepteurs sont similaires aux récepteurs ionotropiques glutamatergiques impliqués dans la transmission synaptique. 16 IRs sont exprimés dans le système olfactif de la mouche adulte, mais pour l'instant on ne connaît rien des autres membres de cette famille. Durant ma thèse, j'ai effectué des recherches sur l'évolution de ces récepteurs ainsi que sur l'expression et la fonction des IRs non olfactifs. Je démontre que les IRs sont apparus chez l'ancêtre commun des protostomiens et ont probablement acquis leur fonction sensorielle très rapidement. De plus, bien qu'un certain nombre d'IRs olfactifs soient conservés chez les insectes, d'importantes variations dans la taille et la divergence des répertoires d'IRs entre les espèces ont été constatées. J'ai également découvert qu'un grand nombre d'IRs non olfactifs sont exprimés dans différents organes gustatifs, ce qui leur confère probablement une fonction dans la perception des goûts. Finalement, pour la première fois, des neurones exprimant des IRs ont été identifiés pour leur fonction dans la perception de sucres et d'acides aminés chez la larve. Mes résultats présentent les IRs comme une famille très dynamique, aux fonctions très variées, qui joue un rôle tant dans l'odorat que dans le goût, et dont la fonction est restée importante tout au long de l'évolution. De plus, l'identification de neurones spécialisés dans la perception de certains composés permettra l'étude des circuits neuronaux impliqués dans le traitement de ces informations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE OF REVIEW: Lipoproteins play a critical role in the development of atherosclerosis, which might result partly from their capacity to induce specific intracellular signaling pathways. The goal of this review is to summarize the signaling properties of lipoproteins, in particular, their capacity to induce activation of mitogen-activated protein kinase pathways and the resulting modulation of cellular responses in blood vessel cells. RECENT FINDINGS: Lipoproteins activate the extracellular signal-regulated kinase and p38 mitogen-activated protein kinase pathways in all blood vessel cell types. This may require lipoprotein docking to scavenger receptor B1, allowing transfer of cholesterol and sphingosine-1-phosphate to plasma membranes. Subsequent propagation of the signals probably requires the stimulation of G protein-coupled receptors, followed by the transactivation of receptor tyrosine kinases. Lipoprotein-induced extracellular signal-regulated kinase activity favors cell proliferation, whereas lipoprotein-induced p38 mitogen-activated protein kinase activity leads to cell hyperplasia and promotes cell migration. Some signaling pathways and cellular effects induced by lipoproteins have been observed in atherosclerotic plaques and therefore represent potential targets for the development of anti-atherosclerotic drugs. SUMMARY: The main blood vessel cell types have the capacity to activate protein kinase pathways in the presence of lipoproteins. This induces cell proliferation, hyperplasia and migration, known to be dysregulated in atherosclerotic lesions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We characterized lipid and lipoprotein changes associated with a lopinavir/ritonavir-containing regimen. We enrolled previously antiretroviral-naive patients participating in the Swiss HIV Cohort Study. Fasting blood samples (baseline) were retrieved retrospectively from stored frozen plasma and posttreatment (follow-up) samples were collected prospectively at two separate visits. Lipids and lipoproteins were analyzed at a single reference laboratory. Sixty-five patients had two posttreatment lipid profile measurements and nine had only one. Most of the measured lipids and lipoprotein plasma concentrations increased on lopinavir/ritonavir-based treatment. The percentage of patients with hypertriglyceridemia (TG >150 mg/dl) increased from 28/74 (38%) at baseline to 37/65 (57%) at the second follow-up. We did not find any correlation between lopinavir plasma levels and the concentration of triglycerides. There was weak evidence of an increase in small dense LDL-apoB during the first year of treatment but not beyond 1 year (odds ratio 4.5, 90% CI 0.7 to 29 and 0.9, 90% CI 0.5 to 1.5, respectively). However, 69% of our patients still had undetectable small dense LDL-apoB levels while on treatment. LDL-cholesterol increased by a mean of 17 mg/dl (90% CI -3 to 37) during the first year of treatment, but mean values remained below the cut-off for therapeutic intervention. Despite an increase in the majority of measured lipids and lipoproteins particularly in the first year after initiation, we could not detect an obvious increase of cardiovascular risk resulting from the observed lipid changes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To analyze the expression of estrogen receptors α and β as well as their target genes implicated in proliferation, c-myc, cyclin D1, and GREB1, in the endometrium of women with or without endometriosis. DESIGN: Expression analysis in human tissue. SETTING: University hospitals and a clinic. PATIENT(S): Ninety-one premenopausal women (59 patients with endometriosis and 32 controls) undergoing laparoscopic surgery. INTERVENTION(S): Biopsies were obtained at time of surgery, performed during the proliferative phase of the cycle. MAIN OUTCOME MEASURE(S): Estrogen receptors α and β as well as c-myc, cyclin D1, and GREB1 mRNA expression levels were determined by quantitative reverse transcriptase-polymerase chain reaction. Tissue localization of these estrogen-regulated genes was analyzed by immunohistochemistry. RESULT(S): Estrogen receptors α and β as well as c-myc, cyclin D1, and GREB1 mRNA expression levels were increased in ectopic tissue in comparison with both normal and eutopic endometrium. Estrogen receptor mRNA levels also were upregulated in the eutopic peritoneal tissue of patients with endometriosis. Cyclin D1 and GREB1 expression was augmented in eutopic endometrium. c-myc, cyclin D1, and GREB1 proteins exhibited a nuclear localization in ectopic endometrial tissue. CONCLUSION(S): This constitutes the first report of increased expression of GREB1, as well as cyclin D1 and c-myc, in peritoneal endometriotic lesions, implicating these proteins in estrogen-dependent growth in this context.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The discovery in 1988 of endothelin, the most potent human endogenous vasoconstrictor, has opened the race to the discovery of a new weapon against arterial hypertension. The development of the endothelin receptors antagonists (ERAs) and the demonstration of their efficacy in preclinical models initially raised a wave of enthusiasm, which was however tempered due to their unfavorable side effect profile. In this article we will review the phases of the development ERAs, and their current and future place as therapeutic tool against arterial hypertension.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: In mice, a partial loss of function of the epithelial sodium channel (ENaC), which regulates sodium excretion in the distal nephron, causes pseudohypoaldosteronism, a salt-wasting syndrome. The purpose of the present experiments was to examine how alpha ENaC knockout heterozygous (+/-) mice, which have only one allele of the gene encoding for the alpha subunit of ENaC, control their blood pressure (BP) and sodium balance. METHODS: BP, urinary electrolyte excretion, plasma renin activity, and urinary adosterone were measured in wild-type (+/+) and heterozygous (+/-) mice on a low, regular, or high sodium diet. In addition, the BP response to angiotensin II (Ang II) and to Ang II receptor blockade, and the number and affinity of Ang II subtype 1 (AT1) receptors in renal tissue were analyzed in both mouse strains on the three diets. RESULTS: In comparison with wild-type mice (+/+), alpha ENaC heterozygous mutant mice (+/-) showed an intact capacity to maintain BP and sodium balance when studied on different sodium diets. However, no change in plasma renin activity was found in response to changes in sodium intake in alpha ENaC +/- mice. On a normal salt diet, heterozygous mice had an increased vascular responsiveness to exogenous Ang II (P < 0.01). Moreover, on a normal and low sodium intake, these mice exhibited an increase in the number of AT1 receptors in renal tissues; their BP lowered markedly during the Ang II receptor blockade (P < 0.01) and there was a clear tendency for an increase in urinary aldosterone excretion. CONCLUSIONS: alpha ENaC heterozygous mice have developed an unusual mechanism of compensation leading to an activation of the renin-angiotensin system, that is, the up-regulation of AT1 receptors. This up-regulation may be due to an increase in aldosterone production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effectiveness of lipid-lowering medication critically depends on the patients' compliance and the efficacy of the prescribed drug. The primary objective of this multicentre study was to compare the efficacy of rosuvastatin with or without access to compliance initiatives, in bringing patients to the Joint European Task Force's (1998) recommended low-density lipoprotein cholesterol (LDL-C) level goal (LDL-C, <3.0 mmol/L) at week 24. Secondary objectives were comparison of the number and percentage of patients achieving European goals (1998, 2003) for LDL-C and other lipid parameters. Patients with primary hypercholesterolaemia and a 10-year coronary heart disease risk of >20% received open label rosuvastatin treatment for 24 weeks with or without access to compliance enhancement tools. The initial daily dosage of 10 mg could be doubled at week 12. Compliance tools included: a) a starter pack for subjects containing a videotape, an educational leaflet, a passport/goal diary and details of the helpline and/or website; b) regular personalised letters to provide message reinforcement; c) a toll-free helpline and a website. The majority of patients (67%) achieved the 1998 European goal for LDL-C at week 24. 31% required an increase in dosage of rosuvastatin to 20 mg at week 12. Compliance enhancement tools did not increase the number of patients achieving either the 1998 or the 2003 European target for plasma lipids. Rosuvastatin was well tolerated during this study. The safety profile was comparable with other drugs of the same class. 63 patients in the 10 mg group and 58 in the 10 mg Plus group discontinued treatment. The main reasons for discontinuation were adverse events (39 patients in the 10 mg group; 35 patients in the 10 mg Plus group) and loss to follow-up (13 patients in the 10 mg group; 9 patients in the 10 mg Plus group). The two most frequently reported adverse events were myalgia (34 patients, 3% respectively) and back pain (23 patients, 2% respectively). The overall rate of temporary or permanent study discontinuation due to adverse events was 9% (n = 101) in patients receiving 10 mg rosuvastatin and 3% (n = 9) in patients titrated up to 20 mg rosuvastatin. Rosuvastatin was effective in lowering LDL-C values in patients with hypercholesterolaemia to the 1998 European target at week 24. However, compliance enhancement tools did not increase the number of patients achieving any European targets for plasma lipids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIMS/HYPOTHESIS: We explored the potential adverse effects of pro-atherogenic oxidised LDL-cholesterol particles on beta cell function. MATERIALS AND METHODS: Isolated human and rat islets and different insulin-secreting cell lines were incubated with human oxidised LDL with or without HDL particles. The insulin level was monitored by ELISA, real-time PCR and a rat insulin promoter construct linked to luciferase gene reporter. Cell apoptosis was determined by scoring cells displaying pycnotic nuclei. RESULTS: Prolonged incubation with human oxidised LDL particles led to a reduction in preproinsulin expression levels, whereas the insulin level was preserved in the presence of native LDL-cholesterol. The loss of insulin production occurred at the transcriptional levels and was associated with an increase in activator protein-1 transcriptional activity. The rise in activator protein-1 activity resulted from activation of c-Jun N-terminal kinases (JNK, now known as mitogen-activated protein kinase 8 [MAPK8]) due to a subsequent decrease in islet-brain 1 (IB1; now known as MAPK8 interacting protein 1) levels. Consistent with the pro-apoptotic role of the JNK pathway, oxidised LDL also induced a twofold increase in the rate of beta cell apoptosis. Treatment of the cells with JNK inhibitor peptides or HDL countered the effects mediated by oxidised LDL. CONCLUSIONS/INTERPRETATION: These data provide strong evidence that oxidised LDL particles exert deleterious effects in the progression of beta cell failure in diabetes and that these effects can be countered by HDL particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While there is evidence that the two ubiquitously expressed thyroid hormone (T3) receptors, TRalpha1 and TRbeta1, have distinct functional specificities, the mechanism by which they discriminate potential target genes remains largely unexplained. In this study, we demonstrate that the thyroid hormone response elements (TRE) from the malic enzyme and myelin basic protein genes (METRE and MBPTRE) respectively, are not functionally equivalent. The METRE, which is a direct repeat motif with a 4-base pair gap between the two half-site hexamers binds thyroid hormone receptor as a heterodimer with 9-cis-retinoic acid receptor (RXR) and mediates a high T3-dependent activation in response to TRalpha1 or TRbeta1 in NIH3T3 cells. In contrast, the MBPTRE, which consists of an inverted palindrome formed by two hexamers spaced by 6 base pairs, confers an efficient transactivation by TRbeta1 but a poor transactivation by TRalpha1. While both receptors form heterodimers with RXR on MBPTRE, the poor transactivation by TRalpha1 correlates also with its ability to bind efficiently as a monomer. This monomer, which is only observed with TRalpha1 bound to MBPTRE, interacts neither with N-CoR nor with SRC-1, explaining its functional inefficacy. However, in Xenopus oocytes, in which RXR proteins are not detectable, the transactivation mediated by TRalpha1 and TRbeta1 is equivalent and independent of a RXR supply, raising the question of the identity of the thyroid hormone receptor partner in these cells. Thus, in mammalian cells, the binding characteristics of TRalpha1 to MBPTRE (i.e. high monomer binding efficiency and low transactivation activity) might explain the particular pattern of T3 responsiveness of MBP gene expression during central nervous system development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lipophilic compounds such as retinoic acid and long-chain fatty acids regulate gene transcription by activating nuclear receptors such as retinoic acid receptors (RARs) and peroxisome proliferator-activated receptors (PPARs). These compounds also bind in cells to members of the family of intracellular lipid binding proteins, which includes cellular retinoic acid-binding proteins (CRABPs) and fatty acid binding proteins (FABPs). We previously reported that CRABP-II enhances the transcriptional activity of RAR by directly targeting retinoic acid to the receptor. Here, potential functional cooperation between FABPs and PPARs in regulating the transcriptional activities of their common ligands was investigated. We show that adipocyte FABP and keratinocyte FABP (A-FABP and K-FABP, respectively) selectively enhance the activities of PPARgamma and PPARbeta, respectively, and that these FABPs massively relocate to the nucleus in response to selective ligands for the PPAR isotype which they activate. We show further that A-FABP and K-FABP interact directly with PPARgamma and PPARbeta and that they do so in a receptor- and ligand-selective manner. Finally, the data demonstrate that the presence of high levels of K-FABP in keratinocytes is essential for PPARbeta-mediated induction of differentiation of these cells. Taken together, the data establish that A-FABP and K-FABP govern the transcriptional activities of their ligands by targeting them to cognate PPARs in the nucleus, thereby enabling PPARs to exert their biological functions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Toll-like receptors (TLRs) are pattern recognition receptors playing a fundamental role in sensing microbial invasion and initiating innate and adaptive immune responses. TLRs are also triggered by danger signals released by injured or stressed cells during sepsis. Here we focus on studies developing TLR agonists and antagonists for the treatment of infectious diseases and sepsis. Positioned at the cell surface, TLR4 is essential for sensing lipopolysaccharide of Gram-negative bacteria, TLR2 is involved in the recognition of a large panel of microbial ligands, while TLR5 recognizes flagellin. Endosomal TLR3, TLR7, TLR8, TLR9 are specialized in the sensing of nucleic acids produced notably during viral infections. TLR4 and TLR2 are favorite targets for developing anti-sepsis drugs, and antagonistic compounds have shown efficient protection from septic shock in pre-clinical models. Results from clinical trials evaluating anti-TLR4 and anti-TLR2 approaches are presented, discussing the challenges of study design in sepsis and future exploitation of these agents in infectious diseases. We also report results from studies suggesting that the TLR5 agonist flagellin may protect from infections of the gastrointestinal tract and that agonists of endosomal TLRs are very promising for treating chronic viral infections. Altogether, TLR-targeted therapies have a strong potential for prevention and intervention in infectious diseases, notably sepsis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Retinoic acid-the active metabolite of vitamin A-influences biological processes by activating the retinoic acid receptor (RAR). In this issue, Schug et al. (2007) demonstrate that retinoic acid also activates the peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta). Remarkably, retinoic acid signaling through RAR or PPARbeta/delta-which depends on cytoplasmic retinoic acid transporters-commits the cell to opposite fates, apoptosis or survival, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aldosterone and corticosterone bind to mineralocorticoid (MR) and glucocorticoid receptors (GR), which, upon ligand binding, are thought to translocate to the cell nucleus to act as transcription factors. Mineralocorticoid selectivity is achieved by the 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) that inactivates 11β-hydroxy glucocorticoids. High expression levels of 11β-HSD2 characterize the aldosterone-sensitive distal nephron (ASDN), which comprises the segment-specific cells of late distal convoluted tubule (DCT2), connecting tubule (CNT), and collecting duct (CD). We used MR- and GR-specific antibodies to study localization and regulation of MR and GR in kidneys of rats with altered plasma aldosterone and corticosterone levels. In control rats, MR and GR were found in cell nuclei of thick ascending limb (TAL), DCT, CNT, CD cells, and intercalated cells (IC). GR was also abundant in cell nuclei and the subapical compartment of proximal tubule (PT) cells. Dietary NaCl loading, which lowers plasma aldosterone, caused a selective removal of GR from cell nuclei of 11β-HSD2-positive ASDN. The nuclear localization of MR was unaffected. Adrenalectomy (ADX) resulted in removal of MR and GR from the cell nuclei of all epithelial cells. Aldosterone replacement rapidly relocated the receptors in the cell nuclei. In ASDN cells, low-dose corticosterone replacement caused nuclear localization of MR, but not of GR. The GR was redistributed to the nucleus only in PT, TAL, early DCT, and IC that express no or very little 11β-HSD2. In ASDN cells, nuclear GR localization was only achieved when corticosterone was replaced at high doses. Thus ligand-induced nuclear translocation of MR and GR are part of MR and GR regulation in the kidney and show remarkable segment- and cell type-specific characteristics. Differential regulation of MR and GR may alter the level of heterodimerization of the receptors and hence may contribute to the complexity of corticosteroid effects on ASDN function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ionotropic Receptors (IRs) are a recently characterized family of olfactory receptors in the fruit fly, Drosophila melanogaster. IRs are not related to insect Odorant Receptors (ORs), but rather have evolved from ionotropic glutamate receptors (iGluRs), a conserved family of synaptic ligand-gated ion channels. Here, we review the expression and function of IRs in Drosophila, highlighting similarities and differences with iGluRs. We also briefly describe the organization of the neuronal circuits in which IRs function, comparing and contrasting them with the sensory pathways expressing ORs. Finally, we summarize the bioinformatic identification and initial characterization of IRs in other species, which imply an evolutionarily conserved role for these receptors in chemosensation in insects and other protostomes.