196 resultados para Heart Function Tests
Resumo:
In solid organ transplantation, ischemia/reperfusion (IR) injury during organ procurement, storage and reperfusion is an unavoidable detrimental event for the graft, as it amplifies graft inflammation and rejection. Intracellular mitogen-activated protein kinase (MAPK) signaling pathways regulate inflammation and cell survival during IR injury. The four best-characterized MAPK subfamilies are the c-Jun NH2-terminal kinase (JNK), extracellular signal- regulated kinase-1/2 (ERK1/2), p38 MAPK, and big MAPK-1 (BMK1/ERK5). Here, we review the role of MAPK activation during myocardial IR injury as it occurs during heart transplantation. Most of our current knowledge regarding MAPK activation and cardioprotection comes from studies of preconditioning and postconditioning in nontransplanted hearts. JNK and p38 MAPK activation contributes to myocardial IR injury after prolonged hypothermic storage. p38 MAPK inhibition improves cardiac function after cold storage, rewarming and reperfusion. Small-molecule p38 MAPK inhibitors have been tested clinically in patients with chronic inflammatory diseases, but not in transplanted patients, so far. Organ transplantation offers the opportunity of starting a preconditioning treatment before organ procurement or during cold storage, thus modulating early events in IR injury. Future studies will need to evaluate combined strategies including p38 MAPK and/or JNK inhibition, ERK1/2 activation, pre- or postconditioning protocols, new storage solutions, and gentle reperfusion.
Resumo:
Left ventricular hypertrophy (LVH) is due to pressure overload or mechanical stretch and is thought to be associated with remodeling of gap-junctions. We investigated whether the expression of connexin 43 (Cx43) is altered in humans in response to different degrees of LVH. The expression of Cx43 was analyzed by quantitative polymerase chain reaction, Western blot analysis and immunohistochemistry on left ventricular biopsies from patients undergoing aortic or mitral valve replacement. Three groups were analyzed: patients with aortic stenosis with severe LVH (n=9) versus only mild LVH (n=7), and patients with LVH caused by mitral regurgitation (n=5). Cx43 mRNA expression and protein expression were similar in the three groups studied. Furthermore, immunohistochemistry revealed no change in Cx43 distribution. We can conclude that when compared with mild LVH or with LVH due to volume overload, severe LVH due to chronic pressure overload is not accompanied by detectable changes of Cx43 expression or spatial distribution.
Resumo:
Buchheit, M, Al Haddad, H, Millet GP, Lepretre, PM, Newton, M, and Ahmaidi, S. Cardiorespiratory and cardiac autonomic responses to 30-15 Intermittent Fitness Test in team sport players. J Strength Cond Res 23(1): xxx-xxx, 2009-The 30-15 Intermittent Fitness Test (30-15IFT) is an attractive alternative to classic continuous incremental field tests for defining a reference velocity for interval training prescription in team sport athletes. The aim of the present study was to compare cardiorespiratory and autonomic responses to 30-15IFT with those observed during a standard continuous test (CT). In 20 team sport players (20.9 +/- 2.2 years), cardiopulmonary parameters were measured during exercise and for 10 minutes after both tests. Final running velocity, peak lactate ([La]peak), and rating of perceived exertion (RPE) were also measured. Parasympathetic function was assessed during the postexercise recovery phase via heart rate (HR) recovery time constant (HRRtau) and HR variability (HRV) vagal-related indices. At exhaustion, no difference was observed in peak oxygen uptake (&OV0312;o2peak), respiratory exchange ratio, HR, or RPE between 30-15IFT and CT. In contrast, 30-15IFT led to significantly higher minute ventilation, [La]peak, and final velocity than CT (p < 0.05 for all parameters). All maximal cardiorespiratory variables observed during both tests were moderately to well correlated (e.g., r = 0.76, p = 0.001 for &OV0312;o2peak). Regarding ventilatory thresholds (VThs), all cardiorespiratory measurements were similar and well correlated between the 2 tests. Parasympathetic function was lower after 30-15IFT than after CT, as indicated by significantly longer HHRtau (81.9 +/- 18.2 vs. 60.5 +/- 19.5 for 30-15IFT and CT, respectively, p < 0.001) and lower HRV vagal-related indices (i.e., the root mean square of successive R-R intervals differences [rMSSD]: 4.1 +/- 2.4 and 7.0 +/- 4.9 milliseconds, p < 0.05). In conclusion, the 30-15IFT is accurate for assessing VThs and &OV0312;o2peak, but it alters postexercise parasympathetic function more than a continuous incremental protocol.
Resumo:
RESUME Les maladies cardio-vasculaires représentent la cause la plus importante de mortalité et de morbidité dans les pays occidentaux. La thérapie génique offre une nouvelle approche au traitement de ces maladies. L'expression de gènes protecteurs dans le myocarde par des technologies de transfert génique peut améliorer la fonction ventriculaire lors de l'insuffisance cardiaque ou stimuler la formation de nouveaux vaisseaux dans la maladie coronarienne. Etant donné qu'une majorité des maladies cardiaques sont des maladies chroniques, l'expression durable du gène thérapeutique introduit dans le coeur est souhaitable dans de nombreux cas. Malheureusement, l'utilité des vecteurs de transfert génique les plus utilisés en thérapie génique cardiovasculaire est limitée par une performance faible (ADN plasmidique) et une courte durée d'expression (adénovirus). Récemment, des vecteurs de transfert génique dérivés des lentivirus, une sous-famille des rétrovirus, ont retenu l'attention de la communauté scientifique en raison de leur capacité à exprimer des gènes à long terme. Contrairement aux vecteurs rétroviraux traditionnels, les vecteurs lentiviraux transduisent des gènes même dans des cellules qui ne se divisent pas, ce qui est le cas des cardiomyocytes adultes. Ces vecteurs présentent un profil de biosécurité comparable à celui des vecteurs rétroviraux traditionnels. Nous avons donc décidé de tester l'utilité des vecteurs lentiviraux pour le transfert génique dans des cardiomyocytes de rat adulte in vitro et in vivo. Plusieurs versions de vecteurs lentiviraux contenant différent promoteurs ont été construites. Ces vecteurs contenant le gène marqueur EGFP (enhanced green fluorescent protein) ont été testés dans des cardiomyocytes de rat in vitro, ainsi que dans des coeurs de rat in vivo. Le but de ces expériences était de déterminer la durée de l'expression du transgène après injection intramyocardique chez le rat. Pour ce faire, nous avons développé une technique ELISA pour détecter la protéine EGFP dans des extraits de tissu cardiaque. Les résultats ont montré que la protéine EGFP était encore présente à des niveaux significatifs jusqu'à dix semaines après l'injection de vecteurs lentiviraux, alors que l'expression transgénique obtenue avec un vecteur adénoviral traditionnel a été plus limitée dans le temps. Ces résultats démontrent la capacité des vecteurs lentiviraux à exprimer des gènes d'intérêt de manière performante et stable dans le cur de rat adulte in vivo. SUMMARY Cardiovascular diseases are the first cause of morbidity and mortality in Western countries. Gene therapy offers a new approach to these diseases. Expression of therapeutic genes in the myocardium by gene transfer technologies can improve ventricular function in heart failure and stimulate neovascularization in coronary disease. Chronic heart diseases likely require sustained expression of the therapeutic gene within the heart itself. Unfortunately, the most commonly used vectors in cardiovascular gene therapy, i.e. plasmid DNA and recombinant adenovirus vectors, are limited by poor DNA uptake and transient transgene expression, respectively. Recently, lentivirus-derived vectors have attracted much interest because of their ability to achieve long-term transgene expression. In contrast to traditional retroviral vectors, lentiviral vectors are also able to transduce non- dividing cells, while presenting a comparable biosafety profile. Adult cardiomyocytes are terminally differentiated cells that do not divide under normal conditions. For these reasons, we have decided to evaluate the efficiency of lentiviral vectors for gene-transduction of adult cardiomyocytes both in vitro and in vivo. We constructed various types of lentiviral vectors containing various promoters. Vectors encoding EGFP as a reporter gene were tested in rat cardiomyocytes in vitro and in rat hearts in vivo. The aim of the experiments involved in this thesis work was to determine the duration of the expression of the transgene after rat intramyocardial injection using a quantitative assay. Therefore, an ELISA technique was set up to measure the EGFP protein in rat heart tissue extracts. Our results showed that the EGFP protein was still present at significant levels at ten weeks after lentiviral vector injection, whereas the duration of expression with adenoviral vectors was shorter. These results demonstrate that lentiviral vectors efficiently deliver genes and achieve sustained transgene expression in adult rat cardiomyocytes in vivo.
Resumo:
AIM: Heart disease is recognized as a consequence of dysregulation of cardiac gene regulatory networks. Previously, unappreciated components of such networks are the long non-coding RNAs (lncRNAs). Their roles in the heart remain to be elucidated. Thus, this study aimed to systematically characterize the cardiac long non-coding transcriptome post-myocardial infarction and to elucidate their potential roles in cardiac homoeostasis. METHODS AND RESULTS: We annotated the mouse transcriptome after myocardial infarction via RNA sequencing and ab initio transcript reconstruction, and integrated genome-wide approaches to associate specific lncRNAs with developmental processes and physiological parameters. Expression of specific lncRNAs strongly correlated with defined parameters of cardiac dimensions and function. Using chromatin maps to infer lncRNA function, we identified many with potential roles in cardiogenesis and pathological remodelling. The vast majority was associated with active cardiac-specific enhancers. Importantly, oligonucleotide-mediated knockdown implicated novel lncRNAs in controlling expression of key regulatory proteins involved in cardiogenesis. Finally, we identified hundreds of human orthologues and demonstrate that particular candidates were differentially modulated in human heart disease. CONCLUSION: These findings reveal hundreds of novel heart-specific lncRNAs with unique regulatory and functional characteristics relevant to maladaptive remodelling, cardiac function and possibly cardiac regeneration. This new class of molecules represents potential therapeutic targets for cardiac disease. Furthermore, their exquisite correlation with cardiac physiology renders them attractive candidate biomarkers to be used in the clinic.
Resumo:
OBJECTIVES: Non-steroidal anti-inflammatory drugs (NSAIDs) may cause kidney damage. This study assessed the impact of prolonged NSAID exposure on renal function in a large rheumatoid arthritis (RA) patient cohort. METHODS: Renal function was prospectively followed between 1996 and 2007 in 4101 RA patients with multilevel mixed models for longitudinal data over a mean period of 3.2 years. Among the 2739 'NSAID users' were 1290 patients treated with cyclooxygenase type 2 selective NSAIDs, while 1362 subjects were 'NSAID naive'. Primary outcome was the estimated glomerular filtration rate according to the Cockroft-Gault formula (eGFRCG), and secondary the Modification of Diet in Renal Disease and Chronic Kidney Disease Epidemiology Collaboration formula equations and serum creatinine concentrations. In sensitivity analyses, NSAID dosing effects were compared for patients with NSAID registration in ≤/>50%, ≤/>80% or ≤/>90% of assessments. FINDINGS: In patients with baseline eGFRCG >30 mL/min, eGFRCG evolved without significant differences over time between 'NSAID users' (mean change in eGFRCG -0.87 mL/min/year, 95% CI -1.15 to -0.59) and 'NSAID naive' (-0.67 mL/min/year, 95% CI -1.26 to -0.09, p=0.63). In a multivariate Cox regression analysis adjusted for significant confounders age, sex, body mass index, arterial hypertension, heart disease and for other insignificant factors, NSAIDs were an independent predictor for accelerated renal function decline only in patients with advanced baseline renal impairment (eGFRCG <30 mL/min). Analyses with secondary outcomes and sensitivity analyses confirmed these results. CONCLUSIONS: NSAIDs had no negative impact on renal function estimates but in patients with advanced renal impairment.
Resumo:
BACKGROUND: Left atrial (LA) dilatation is associated with a large variety of cardiac diseases. Current cardiovascular magnetic resonance (CMR) strategies to measure LA volumes are based on multi-breath-hold multi-slice acquisitions, which are time-consuming and susceptible to misregistration. AIM: To develop a time-efficient single breath-hold 3D CMR acquisition and reconstruction method to precisely measure LA volumes and function. METHODS: A highly accelerated compressed-sensing multi-slice cine sequence (CS-cineCMR) was combined with a non-model-based 3D reconstruction method to measure LA volumes with high temporal and spatial resolution during a single breath-hold. This approach was validated in LA phantoms of different shapes and applied in 3 patients. In addition, the influence of slice orientations on accuracy was evaluated in the LA phantoms for the new approach in comparison with a conventional model-based biplane area-length reconstruction. As a reference in patients, a self-navigated high-resolution whole-heart 3D dataset (3D-HR-CMR) was acquired during mid-diastole to yield accurate LA volumes. RESULTS: Phantom studies. LA volumes were accurately measured by CS-cineCMR with a mean difference of -4.73 ± 1.75 ml (-8.67 ± 3.54%, r2 = 0.94). For the new method the calculated volumes were not significantly different when different orientations of the CS-cineCMR slices were applied to cover the LA phantoms. Long-axis "aligned" vs "not aligned" with the phantom long-axis yielded similar differences vs the reference volume (-4.87 ± 1.73 ml vs. -4.45 ± 1.97 ml, p = 0.67) and short-axis "perpendicular" vs. "not-perpendicular" with the LA long-axis (-4.72 ± 1.66 ml vs. -4.75 ± 2.13 ml; p = 0.98). The conventional bi-plane area-length method was susceptible for slice orientations (p = 0.0085 for the interaction of "slice orientation" and "reconstruction technique", 2-way ANOVA for repeated measures). To use the 3D-HR-CMR as the reference for LA volumes in patients, it was validated in the LA phantoms (mean difference: -1.37 ± 1.35 ml, -2.38 ± 2.44%, r2 = 0.97). Patient study: The CS-cineCMR LA volumes of the mid-diastolic frame matched closely with the reference LA volume (measured by 3D-HR-CMR) with a difference of -2.66 ± 6.5 ml (3.0% underestimation; true LA volumes: 63 ml, 62 ml, and 395 ml). Finally, a high intra- and inter-observer agreement for maximal and minimal LA volume measurement is also shown. CONCLUSIONS: The proposed method combines a highly accelerated single-breathhold compressed-sensing multi-slice CMR technique with a non-model-based 3D reconstruction to accurately and reproducibly measure LA volumes and function.
Resumo:
PURPOSE: To test the hypothesis that both coronary anatomy and ventricular function can be assessed simultaneously using a single four-dimensional (4D) acquisition. METHODS: A free-running 4D whole-heart self-navigated acquisition incorporating a golden angle radial trajectory was implemented and tested in vivo in nine healthy adult human subjects. Coronary magnetic resonance angiography (MRA) datasets with retrospective selection of acquisition window width and position were extracted and quantitatively compared with baseline self-navigated electrocardiography (ECG) -triggered coronary MRA. From the 4D datasets, the left-ventricular end-systolic, end-diastolic volumes (ESV & EDV) and ejection fraction (EF) were computed and compared with values obtained from conventional 2D cine images. RESULTS: The 4D datasets enabled dynamic assessment of the whole heart with isotropic spatial resolution of 1.15 mm(3) . Coronary artery image quality was very similar to that of the ECG-triggered baseline scan despite some SNR penalty. A good agreement between 4D and 2D cine imaging was found for EDV, ESV, and EF. CONCLUSION: The hypothesis that both coronary anatomy and ventricular function can be assessed simultaneously in vivo has been tested positive. Retrospective and flexible acquisition window selection allows to best visualize each coronary segment at its individual time point of quiescence. Magn Reson Med, 2014. © 2014 Wiley Periodicals, Inc.
Resumo:
Endothelial cell release of nitric oxide (NO) is a defining characteristic of nondiseased arteries, and abnormal endothelial NO release is both a marker of early atherosclerosis and a predictor of its progression and future events. Healthy coronaries respond to endothelial-dependent stressors with vasodilatation and increased coronary blood flow (CBF), but those with endothelial dysfunction respond with paradoxical vasoconstriction and reduced CBF. Recently, coronary MRI and isometric handgrip exercise (IHE) were reported to noninvasively quantify coronary endothelial function (CEF). However, it is not known whether the coronary response to IHE is actually mediated by NO and/or whether it is reproducible over weeks. To determine the contribution of NO, we studied the coronary response to IHE before and during infusion of N(G)-monomethyl-l-arginine (l-NMMA, 0.3 mg·kg(-1)·min(-1)), a NO-synthase inhibitor, in healthy volunteers. For reproducibility, we performed two MRI-IHE studies ∼8 wk apart in healthy subjects and patients with coronary artery disease (CAD). Changes from rest to IHE in coronary cross-sectional area (%CSA) and diastolic CBF (%CBF) were quantified. l-NMMA completely blocked normal coronary vasodilation during IHE [%CSA, 12.9 ± 2.5 (mean ± SE, placebo) vs. -0.3 ± 1.6% (l-NMMA); P < 0.001] and significantly blunted the increase in flow [%CBF, 47.7 ± 6.4 (placebo) vs. 10.6 ± 4.6% (l-NMMA); P < 0.001]. MRI-IHE measures obtained weeks apart strongly correlated for CSA (P < 0.0001) and CBF (P < 0.01). In conclusion, the normal human coronary vasoactive response to IHE is primarily mediated by NO. This noninvasive, reproducible MRI-IHE exam of NO-mediated CEF promises to be useful for studying CAD pathogenesis in low-risk populations and for evaluating translational strategies designed to alter CAD in patients.
Resumo:
The 2013 survey addressed the following objectives: Primary objectives : a) Distribution of health behaviors related to NCDs, particularly tobacco use, alcohol drinking, and physical activity ; b) Distribution of the main modifiable risk factors of NCDs, particularly blood pressure, adiposity markers, diabetes and blood lipids ; c) Rates of awareness, treatment and control of hypertension, diabetes and dyslipidemia ; d) Comparison of findings in the survey 2013 with results in previous similar NCD surveys in 1989, 1994, 2004 ; e) Dietary patterns ; f) Knowledge, attitudes and practices related to NCDs and NCD risk factors. Secondary objectives : g) Assessment of indicators of quality of health (e.g. SF‐12) ; h) Assessment of psychological stress and relation with NCD ; i) Assessment of several indicators of frailty (e.g. handgrip strength test, chair strand test, functional limitations) ; j) Assessment of knowledge and level of agreement with current policies on tobacco control ; k) Use of public and private health care services, particularly for NCDs ; l) Exposure to advice on health behaviors given by health professionals at health care level ; m) Burden of chronic diseases not related to the main NCDs (e.g. musculoskeletal, mental health, etc) ; n) Screening of selected cancers ; o) Assessment of the kidney function ; p) Frequency of heart arrhythmias (one‐lead ECG) and heart murmurs (auscultation) ; q) Assessment of bone mineral density (ultrasound of calcaneus) ; r) Exposure of the population to mass media, particularly in relation to health programs, and use by the population of new communication technologies ; s) Assessment of a number of social variables and their association with the variables measured in the survey ; t) More generally, the survey provides broad information (medical, social, environment, etc) that can be useful for tailoring NCD prevention and control programs.
Resumo:
BACKGROUND: For free-breathing cardiovascular magnetic resonance (CMR), the self-navigation technique recently emerged, which is expected to deliver high-quality data with a high success rate. The purpose of this study was to test the hypothesis that self-navigated 3D-CMR enables the reliable assessment of cardiovascular anatomy in patients with congenital heart disease (CHD) and to define factors that affect image quality. METHODS: CHD patients ≥2 years-old and referred for CMR for initial assessment or for a follow-up study were included to undergo a free-breathing self-navigated 3D CMR at 1.5T. Performance criteria were: correct description of cardiac segmental anatomy, overall image quality, coronary artery visibility, and reproducibility of great vessels diameter measurements. Factors associated with insufficient image quality were identified using multivariate logistic regression. RESULTS: Self-navigated CMR was performed in 105 patients (55% male, 23 ± 12y). Correct segmental description was achieved in 93% and 96% for observer 1 and 2, respectively. Diagnostic quality was obtained in 90% of examinations, and it increased to 94% if contrast-enhanced. Left anterior descending, circumflex, and right coronary arteries were visualized in 93%, 87% and 98%, respectively. Younger age, higher heart rate, lower ejection fraction, and lack of contrast medium were independently associated with reduced image quality. However, a similar rate of diagnostic image quality was obtained in children and adults. CONCLUSION: In patients with CHD, self-navigated free-breathing CMR provides high-resolution 3D visualization of the heart and great vessels with excellent robustness.
Resumo:
This study investigated changes in heart rate variability (HRV) in elite Nordic-skiers to characterize different types of "fatigue" in 27 men and 30 women surveyed from 2004 to 2008. R-R intervals were recorded at rest during 8 min supine (SU) followed by 7 min standing (ST). HRV parameters analysed were powers of low (LF), high (HF) frequencies, (LF+HF) (ms(2)) and heart rate (HR, bpm). In the 1 063 HRV tests performed, 172 corresponded to a "fatigue" state and the first were considered for analysis. 4 types of "fatigue" (F) were identified: 1. F(HF(-)LF(-))SU_ST for 42 tests: decrease in LFSU (- 46%), HFSU (- 70%), LFST (- 43%), HFST (- 53%) and increase in HRSU (+ 15%), HRST (+ 14%). 2. F(LF(+) SULF(-) ST) for 8 tests: increase in LFSU (+ 190%) decrease in LFST (- 84%) and increase in HRST (+ 21%). 3. F(HF(-) SUHF(+) ST) for 6 tests: decrease in HFSU (- 72%) and increase in HFST (+ 501%). 4. F(HF(+) SU) for only 1 test with an increase in HFSU (+ 2161%) and decrease in HRSU (- 15%). Supine and standing HRV patterns were independently modified by "fatigue". 4 "fatigue"-shifted HRV patterns were statistically sorted according to differently paired changes in the 2 postures. This characterization might be useful for further understanding autonomic rearrangements in different "fatigue" conditions.
Resumo:
Reduced glomerular filtration rate defines chronic kidney disease and is associated with cardiovascular and all-cause mortality. We conducted a meta-analysis of genome-wide association studies for estimated glomerular filtration rate (eGFR), combining data across 133,413 individuals with replication in up to 42,166 individuals. We identify 24 new and confirm 29 previously identified loci. Of these 53 loci, 19 associate with eGFR among individuals with diabetes. Using bioinformatics, we show that identified genes at eGFR loci are enriched for expression in kidney tissues and in pathways relevant for kidney development and transmembrane transporter activity, kidney structure, and regulation of glucose metabolism. Chromatin state mapping and DNase I hypersensitivity analyses across adult tissues demonstrate preferential mapping of associated variants to regulatory regions in kidney but not extra-renal tissues. These findings suggest that genetic determinants of eGFR are mediated largely through direct effects within the kidney and highlight important cell types and biological pathways.
Resumo:
BACKGROUND AND OBJECTIVES: Sudden cardiac death (SCD) is a severe burden of modern medicine. Aldosterone antagonist is publicized as effective in reducing mortality in patients with heart failure (HF) or post myocardial infarction (MI). Our study aimed to assess the efficacy of AAs on mortality including SCD, hospitalization admission and several common adverse effects. METHODS: We searched Embase, PubMed, Web of Science, Cochrane library and clinicaltrial.gov for randomized controlled trials (RCTs) assigning AAs in patients with HF or post MI through May 2015. The comparator included standard medication or placebo, or both. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed. Event rates were compared using a random effects model. Prospective RCTs of AAs with durations of at least 8 weeks were selected if they included at least one of the following outcomes: SCD, all-cause/cardiovascular mortality, all-cause/cardiovascular hospitalization and common side effects (hyperkalemia, renal function degradation and gynecomastia). RESULTS: Data from 19,333 patients enrolled in 25 trials were included. In patients with HF, this treatment significantly reduced the risk of SCD by 19% (RR 0.81; 95% CI, 0.67-0.98; p = 0.03); all-cause mortality by 19% (RR 0.81; 95% CI, 0.74-0.88, p<0.00001) and cardiovascular death by 21% (RR 0.79; 95% CI, 0.70-0.89, p<0.00001). In patients with post-MI, the matching reduced risks were 20% (RR 0.80; 95% CI, 0.66-0.98; p = 0.03), 15% (RR 0.85; 95% CI, 0.76-0.95, p = 0.003) and 17% (RR 0.83; 95% CI, 0.74-0.94, p = 0.003), respectively. Concerning both subgroups, the relative risks respectively decreased by 19% (RR 0.81; 95% CI, 0.71-0.92; p = 0.002) for SCD, 18% (RR 0.82; 95% CI, 0.77-0.88, p < 0.0001) for all-cause mortality and 20% (RR 0.80; 95% CI, 0.74-0.87, p < 0.0001) for cardiovascular mortality in patients treated with AAs. As well, hospitalizations were significantly reduced, while common adverse effects were significantly increased. CONCLUSION: Aldosterone antagonists appear to be effective in reducing SCD and other mortality events, compared with placebo or standard medication in patients with HF and/or after a MI.
Resumo:
Apart from its role as a flow generator for ventilation the diaphragm has a circulatory role. The cyclical abdominal pressure variations from its contractions cause swings in venous return from the splanchnic venous circulation. During exercise the action of the abdominal muscles may enhance this circulatory function of the diaphragm. Eleven healthy subjects (25 ± 7 year, 70 ± 11 kg, 1.78 ± 0.1 m, 3 F) performed plantar flexion exercise at ~4 METs. Changes in body volume (ΔVb) and trunk volume (ΔVtr) were measured simultaneously by double body plethysmography. Volume of blood shifts between trunk and extremities (Vbs) was determined non-invasively as ΔVtr-ΔVb. Three types of breathing were studied: spontaneous (SE), rib cage (RCE, voluntary emphasized inspiratory rib cage breathing), and abdominal (ABE, voluntary active abdominal expiration breathing). During SE and RCE blood was displaced from the extremities into the trunk (on average 0.16 ± 0.33 L and 0.48 ± 0.55 L, p < 0.05 SE vs. RCE), while during ABE it was displaced from the trunk to the extremities (0.22 ± 0.20 L p < 0.001, p < 0.05 RCE and SE vs. ABE respectively). At baseline, Vbs swings (maximum to minimum amplitude) were bimodal and averaged 0.13 ± 0.08 L. During exercise, Vbs swings consistently increased (0.42 ± 0.34 L, 0.40 ± 0.26 L, 0.46 ± 0.21 L, for SE, RCE and ABE respectively, all p < 0.01 vs. baseline). It follows that during leg exercise significant bi-directional blood shifting occurs between the trunk and the extremities. The dynamics and partitioning of these blood shifts strongly depend on the relative predominance of the action of the diaphragm, the rib cage and the abdominal muscles. Depending on the partitioning between respiratory muscles for the act of breathing, the distribution of blood between trunk and extremities can vary by up to 1 L. We conclude that during exercise the abdominal muscles and the diaphragm might play a role of an "auxiliary heart."