190 resultados para historic method
Resumo:
Personal results are presented to illustrate the development of immunoscintigraphy for the detection of cancer over the last 12 years, from the early experimental results in nude mice grafted with human colon carcinoma to the most modern form of immunoscintigraphy applied to patients, using I123 labeled Fab fragments from monoclonal anti-CEA antibodies detected by single photon emission computerized tomography (SPECT). The first generation of immunoscintigraphy used I131 labeled, immunoadsorbent purified, polyclonal anti-CEA antibodies and planar scintigraphy, as the detection system. The second generation used I131 labeled monoclonal anti-CEA antibodies and SPECT, while the third generation employed I123 labeled fragments of monoclonal antibodies and SPECT. The improvement in the precision of tumor images with the most recent forms of immunoscintigraphy is obvious. However, we think the usefulness of immunoscintigraphy for routine cancer management has not yet been entirely demonstrated. Further prospective trials are still necessary to determine the precise clinical role of immunoscintigraphy. A case report is presented on a patient with two liver metastases from a sigmoid carcinoma, who received through the hepatic artery a therapeutic dose (100 mCi) of I131 coupled to 40 mg of a mixture of two high affinity anti-CEA monoclonal antibodies. Excellent localisation in the metastases of the I131 labeled antibodies was demonstrated by SPECT and the treatment was well tolerated. The irradiation dose to the tumor, however, was too low at 4300 rads (with 1075 rads to the normal liver and 88 rads to the bone marrow), and no evidence of tumor regression was obtained. Different approaches for increasing the irradiation dose delivered to the tumor by the antibodies are considered.
Resumo:
Résumé : Cette thèse de doctorat est le fruit d'un projet de recherche européen financé par le quatrième programme cadre de la Commission Européenne (DG XII, Standards, Measurement and Testing). Ce projet, dénommé SMT-CT98-2277, a été financé pour la partie suisse par l'Office Fédéral de l'Education et de la Science (OFES, Berne, Suisse). Le but de ce projet était de développer une méthode harmonisée et collaborativement testée pour le profilage des impuretés de l'amphétamine illicite par chromatographie capillaire en phase gazeuse. Le travail a été divisé en sept phases majeures qui concernaient la synthèse de l'amphétamine, l'identification d'impuretés, l'optimisation de la préparation de l'échantillon et du système chromatographique, la variabilité des résultats, l'investigation de méthodes mathématiques pour la classification et la comparaison de profils et finalement l'application de la méthode à des réels échantillons illicites. La méthode résultant de ce travail n'a pas seulement montré que les données étaient interchangeables entre laboratoires mais aussi qu'elle était supérieure en de nombreux points aux méthodes préalablement publiées dans la littérature scientifique. Abstract : This Ph.D. thesis was carried out in parallel to an European project funded by the fourth framework program of the European Commission (DG XII, Standards, Measurement and Testing). This project, named SMT-CT98-2277 was funded, for the Swiss part, by the Federal Office of Education and Science (OFES, Bern, Switzerland). The aim of the project was to develop a harmonised, collaboratively tested method for the impurity profiling of illicit amphetamine by capillary gas chromatography. The work was divided into seven main tasks which deal with the synthesis of amphetamine, identification of impurities, optimization of sample preparation and of the chromatographic system, variability of the results, investigation of numerical methods for the classification and comparison of profiles and finally application of the methodology to real illicit samples. The resulting method has not only shown to produce interchangeable data between different laboratories but was also found to be superior in many aspects to previously published methods.
Resumo:
The application of statistics to science is not a neutral act. Statistical tools have shaped and were also shaped by its objects. In the social sciences, statistical methods fundamentally changed research practice, making statistical inference its centerpiece. At the same time, textbook writers in the social sciences have transformed rivaling statistical systems into an apparently monolithic method that could be used mechanically. The idol of a universal method for scientific inference has been worshipped since the "inference revolution" of the 1950s. Because no such method has ever been found, surrogates have been created, most notably the quest for significant p values. This form of surrogate science fosters delusions and borderline cheating and has done much harm, creating, for one, a flood of irreproducible results. Proponents of the "Bayesian revolution" should be wary of chasing yet another chimera: an apparently universal inference procedure. A better path would be to promote both an understanding of the various devices in the "statistical toolbox" and informed judgment to select among these.
Resumo:
OBJECTIVE: To assess the iodine status of Swiss population groups and to evaluate the influence of iodized salt as a vector for iodine fortification. DESIGN: The relationship between 24 h urinary iodine and Na excretions was assessed in the general population after correcting for confounders. Single-day intakes were estimated assuming that 92 % of dietary iodine was excreted in 24 h urine. Usual intake distributions were derived for male and female population groups after adjustment for within-subject variability. The estimated average requirement (EAR) cut-point method was applied as guidance to assess the inadequacy of the iodine supply. SETTING: Public health strategies to reduce the dietary salt intake in the general population may affect its iodine supply. SUBJECTS: The study population (1481 volunteers, aged ≥15 years) was randomly selected from three different linguistic regions of Switzerland. RESULTS: The 24 h urine samples from 1420 participants were determined to be properly collected. Mean iodine intakes obtained for men (n 705) and women (n 715) were 179 (sd 68.1) µg/d and 138 (sd 57.8) µg/d, respectively. Urinary Na and Ca, and BMI were significantly and positively associated with higher iodine intake, as were men and non-smokers. Fifty-four per cent of the total iodine intake originated from iodized salt. The prevalence of inadequate iodine intake as estimated by the EAR cut-point method was 2 % for men and 14 % for women. CONCLUSIONS: The estimated prevalence of inadequate iodine intake was within the optimal target range of 2-3 % for men, but not for women.
Resumo:
Very large molecular systems can be calculated with the so called CNDOL approximate Hamiltonians that have been developed by avoiding oversimplifications and only using a priori parameters and formulas from the simpler NDO methods. A new diagonal monoelectronic term named CNDOL/21 shows great consistency and easier SCF convergence when used together with an appropriate function for charge repulsion energies that is derived from traditional formulas. It is possible to obtain a priori molecular orbitals and electron excitation properties after the configuration interaction of single excited determinants with reliability, maintaining interpretative possibilities even being a simplified Hamiltonian. Tests with some unequivocal gas phase maxima of simple molecules (benzene, furfural, acetaldehyde, hexyl alcohol, methyl amine, 2,5 dimethyl 2,4 hexadiene, and ethyl sulfide) ratify the general quality of this approach in comparison with other methods. The calculation of large systems as porphine in gas phase and a model of the complete retinal binding pocket in rhodopsin with 622 basis functions on 280 atoms at the quantum mechanical level show reliability leading to a resulting first allowed transition in 483 nm, very similar to the known experimental value of 500 nm of "dark state." In this very important case, our model gives a central role in this excitation to a charge transfer from the neighboring Glu(-) counterion to the retinaldehyde polyene chain. Tests with gas phase maxima of some important molecules corroborate the reliability of CNDOL/2 Hamiltonians.
Resumo:
AIMS: c-Met is an emerging biomarker in pancreatic ductal adenocarcinoma (PDAC); there is no consensus regarding the immunostaining scoring method for this marker. We aimed to assess the prognostic value of c-Met overexpression in resected PDAC, and to elaborate a robust and reproducible scoring method for c-Met immunostaining in this setting. METHODS AND RESULTS: c-Met immunostaining was graded according to the validated MetMab score, a classic visual scale combining surface and intensity (SI score), or a simplified score (high c-Met: ≥20% of tumour cells with strong membranous staining), in stage I-II PDAC. A computer-assisted classification method (Aperio software) was developed. Clinicopathological parameters were correlated with disease-free survival (DFS) and overall survival(OS). One hundred and forty-nine patients were analysed retrospectively in a two-step process. Thirty-seven samples (whole slides) were analysed as a pre-run test. Reproducibility values were optimal with the simplified score (kappa = 0.773); high c-Met expression (7/37) was associated with shorter DFS [hazard ratio (HR) 3.456, P = 0.0036] and OS (HR 4.257, P = 0.0004). c-Met expression was concordant on whole slides and tissue microarrays in 87.9% of samples, and quantifiable with a specific computer-assisted algorithm. In the whole cohort (n = 131), patients with c-Met(high) tumours (36/131) had significantly shorter DFS (9.3 versus 20.0 months, HR 2.165, P = 0.0005) and OS (18.2 versus 35.0 months, HR 1.832, P = 0.0098) in univariate and multivariate analysis. CONCLUSIONS: Simplified c-Met expression is an independent prognostic marker in stage I-II PDAC that may help to identify patients with a high risk of tumour relapse and poor survival.
Resumo:
The functional method is a new test theory using a new scoring method that assumes complexity in test structure, and thus takes into account every correlation between factors and items. The main specificity of the functional method is to model test scores by multiple regression instead of estimating them by using simplistic sums of points. In order to proceed, the functional method requires the creation of hyperspherical measurement space, in which item responses are expressed by their correlation with orthogonal factors. This method has three main qualities. First, measures are expressed in the absolute metric of correlations; therefore, items, scales and persons are expressed in the same measurement space using the same single metric. Second, factors are systematically orthogonal and without errors, which is optimal in order to predict other outcomes. Such predictions can be performed to estimate how one would answer to other tests, or even to model one's response strategy if it was perfectly coherent. Third, the functional method provides measures of individuals' response validity (i.e., control indices). Herein, we propose a standard procedure in order to identify whether test results are interpretable and to exclude invalid results caused by various response biases based on control indices.