256 resultados para Sex addiction
Resumo:
Purpose: Plasma adiponectin and serum uric acid (SUA) levels are negatively correlated. To better understand the possible mechanisms linking adiponectin and uric acid, we analyzed whether the association between adiponectin and SUA differed by hypertension status (or blood pressure level) and by sex. Methods and materials: We analyzed data from the populationbased CoLaus study (Switzerland). Fasting plasma adiponectin levels were assessed by ELISA and SUA by uricase-PAP. Blood pressure (BP) was measured using a validated automated device and hypertension was defined as having office BP 140/90 mm Hg or being on current antihypertensive treatment. Results: In the 2897 men and 3181 women, aged 35-74, BMI (mean ± SD) was 26.6 ± 4.0 and 25.1 ± 4.8 Kg/m2, systolic blood pressure (SBP) was 132.2 ± 16.6 and 124.8 ± 18.3 mm Hg, median (interquartile range) plasma adiponectin was 6.2 (4.1-9.2) and 10.6 (6.9-15.4) mg/dL, and hypertension prevalence was 42.0% and 30.2%, respectively. The age- and BMI- adjusted partial correlation coefficients between log-adiponectin and SUA were 0.09 and 0.06 in normotensive men and women (P <0.01), and 0.004 (P = 0.88) and 0.15 (P <0.001) in hypertensive men and women, respectively. In median regression adjusted for BMI, insulin, smoking, alcohol consumption, menopausal status and HDL-cholesterol, there was a significant three-way interaction between SUA, SBP and sex for their effect on adiponectin (dependent variable, P = 0.005), as well as interactions between SBP and sex (P = 0.014) and between SUA and sex (P = 0.033). Conclusion: Plasma adiponectin and SUA are negatively associated, independently of BMI and insulin, in a population-based study in Caucasians. However, BP modifies this inverse relationship, as it was significant mainly in women with elevated BP. This observation suggests that the link between adiponectin and SUA may be mediated by sex hormones and the hypertension status.
Resumo:
Smoking influences body weight such that smokers weigh less than non-smokers and smoking cessation often leads to weight increase. The relationship between body weight and smoking is partly explained by the effect of nicotine on appetite and metabolism. However, the brain reward system is involved in the control of the intake of both food and tobacco. We evaluated the effect of single-nucleotide polymorphisms (SNPs) affecting body mass index (BMI) on smoking behavior, and tested the 32 SNPs identified in a meta-analysis for association with two smoking phenotypes, smoking initiation (SI) and the number of cigarettes smoked per day (CPD) in an Icelandic sample (N=34,216 smokers). Combined according to their effect on BMI, the SNPs correlate with both SI (r=0.019, P=0.00054) and CPD (r=0.032, P=8.0 × 10(-7)). These findings replicate in a second large data set (N=127,274, thereof 76,242 smokers) for both SI (P=1.2 × 10(-5)) and CPD (P=9.3 × 10(-5)). Notably, the variant most strongly associated with BMI (rs1558902-A in FTO) did not associate with smoking behavior. The association with smoking behavior is not due to the effect of the SNPs on BMI. Our results strongly point to a common biological basis of the regulation of our appetite for tobacco and food, and thus the vulnerability to nicotine addiction and obesity.
Resumo:
Sex determination is often seen as a dichotomous process: individual sex is assumed to be determined either by genetic (genotypic sex determination, GSD) or by environmental factors (environmental sex determination, ESD), most often temperature (temperature sex determination, TSD). We endorse an alternative view, which sees GSD and TSD as the ends of a continuum. Both effects interact a priori, because temperature can affect gene expression at any step along the sex-determination cascade. We propose to define sex-determination systems at the population- (rather than individual) level, via the proportion of variance in phenotypic sex stemming from genetic versus environmental factors, and we formalize this concept in a quantitative-genetics framework. Sex is seen as a threshold trait underlain by a liability factor, and reaction norms allow modeling interactions between genotypic and temperature effects (seen as the necessary consequences of thermodynamic constraints on the underlying physiological processes). As this formalization shows, temperature changes (due to e.g., climatic changes or range expansions) are expected to provoke turnovers in sex-determination mechanisms, by inducing large-scale sex reversal and thereby sex-ratio selection for alternative sex-determining genes. The frequency of turnovers and prevalence of homomorphic sex chromosomes in cold-blooded vertebrates might thus directly relate to the temperature dependence in sex-determination mechanisms.
Resumo:
In sharp contrast to birds and mammals, most cold-blooded vertebrates have homomorphic (morphologically undifferentiated) sex chromosomes. This might result either from recurrent X-Y recombination (occurring e.g. during occasional events of sex reversal) or from frequent turnovers (during which sex-determining genes are overthrown by new autosomal mutations). Evidence for turnovers is indeed mounting in fish, but very few have so far been documented in amphibians, possibly because of practical difficulties in identifying sex chromosomes. Female heterogamety (ZW) has long been established in Bufo bufo, based on sex reversal and crossing experiments. Here, we investigate a sex-linked marker identified from a laboratory cross between Palearctic green toads (Bufo viridis subgroup). The F(1) offspring produced by a female Bufo balearicus and a male Bufo siculus were phenotypically sexed, displaying an even sex ratio. A sex-specific marker detected in highly reproducible AFLP genotypes was cloned. Sequencing revealed a noncoding, microsatellite-containing fragment. Reamplification and genotyping of families of this and a reciprocal cross showed B. siculus to be male heterogametic (XY) and suggested the same system for B. balearicus. Our results thus reveal a cryptic heterogametic transition within bufonid frogs and help explain patterns of hybrid fitness within the B. viridis subgroup. Turnovers of genetic sex-determination systems may be more frequent in amphibians than previously thought and thus contribute to the prevalence of homomorphic sex chromosomes in this group.
Resumo:
Small or decreasing populations call for emergency actions like, for example, captive breeding programs. Such programs aim at rapidly increasing population sizes in order to reduce the loss of genetic variability and to avoid possible Allee effects. The Lesser Kestrel Falco naumanni is one of the species that is currently supported in several captive breeding programs at various locations. Here, we model the demographic and genetic consequences of potential management strategies that are based on offspring sex ratio manipulation. Increased population growth could be achieved by manipulating female conditions and/or male attractiveness in the captive breeders and consequently shifting the offspring sex ratio towards more female offspring, which are then used for reintroduction. Fragmenting populations into wild-breeding and captive-breeding demes and manipulating population sex ratio both immediately increase the inbreeding coefficient in the next generation (i.e. decrease N-e) but may, in the long term, reduce the loss of genetic variability if population growth is restricted by the number of females. We use the Lesser Kestrel and the wealth of information that is available on this species to predict the long-term consequences of various kinds of sex-ratio manipulation. We find that, in our example and possibly in many other cases, a sex-ratio manipulation that seems realistic could have a beneficial effect on the captive breeding program. However, the possible long-term costs and benefits of such measures need to be carefully optimized.
Resumo:
We investigated sex specificities in the evolutionary processes shaping Y chromosome, autosomes, and mitochondrial DNA patterns of genetic structure in the Valais shrew (Sorex antinorii), a mountain dwelling species with a hierarchical distribution. Both hierarchical analyses of variance and isolation-by-distance analyses revealed patterns of population structure that were not consistent across maternal, paternal, and biparentally inherited markers. Differentiation on a Y microsatellite was lower than expected from the comparison with autosomal microsatellites and mtDNA, and it was mostly due to genetic variance among populations within valleys, whereas the opposite was observed on other markers. In addition, there was no pattern of isolation by distance for the Y, whereas there was strong isolation by distance on mtDNA and autosomes. We use a hierarchical island model of coancestry dynamics to discuss the relative roles of the microevolutionary forces that may induce such patterns. We conclude that sex-biased dispersal is the most important driver of the observed genetic structure, but with an intriguing twist: it seems that dispersal is strongly male biased at large spatial scale, whereas it is mildly biased in favor of females at local scale. These results add to recent reports of scale-specific sex-biased dispersal patterns, and emphasize the usefulness of the Y chromosome in conjunction with mtDNA and autosomes to infer sex specificities.
Resumo:
Natural selection favors alleles that increase the number of offspring produced by their carriers. But in a world that is inherently uncertain within generations, selection also favors alleles that reduce the variance in the number of offspring produced. If previous studies have established this principle, they have largely ignored fundamental aspects of sexual reproduction and therefore how selection on sex-specific reproductive variance operates. To study the evolution and consequences of sex-specific reproductive variance, we present a population-genetic model of phenotypic evolution in a dioecious population that incorporates previously neglected components of reproductive variance. First, we derive the probability of fixation for mutations that affect male and/or female reproductive phenotypes under sex-specific selection. We find that even in the simplest scenarios, the direction of selection is altered when reproductive variance is taken into account. In particular, previously unaccounted for covariances between the reproductive outputs of different individuals are expected to play a significant role in determining the direction of selection. Then, the probability of fixation is used to develop a stochastic model of joint male and female phenotypic evolution. We find that sex-specific reproductive variance can be responsible for changes in the course of long-term evolution. Finally, the model is applied to an example of parental-care evolution. Overall, our model allows for the evolutionary analysis of social traits in finite and dioecious populations, where interactions can occur within and between sexes under a realistic scenario of reproduction.
Resumo:
Resolving the paradox of sex, with its twofold cost to genic transmission, remains one of the major unresolved questions in evolutionary biology. Counting this genetic cost has now gone genomic. In this issue of Molecular Ecology, Kraaijeveld et al. (2012) describe the first genome-scale comparative study of related sexual and asexual animal lineages, to test the hypothesis that asexuals bear heavier loads of deleterious transposable elements. A much higher density of such parasites might be expected, due to the inability of asexual lineages to purge transposons via mechanisms exclusive to sexual reproduction. They find that the answer is yes--and no--depending upon the family of transposons considered. Like many such advances in testing theory, more questions are raised by this study than answered, but a door has been opened to molecular evolutionary analyses of how responses to selection from intragenomic parasites might mediate the costs of sex.
Resumo:
Drug addiction is a multi-etiological disorder to which some individuals are more vulnerable an others. Whereas converging clinical and epidemiological studies report a peak of drug use ring adolescence, many behavioral traits characterizing teenagers have been proposed to contribute to this vulnerability, including a heightened sensation-seeking, an enhanced impulsivity d a larger influence exerted by peers. By many aspects, juvenile rodents display behavioral traits at resemble those of teenagers. However, the concept of increased vulnerability to drug addiction juvenile rats remains in debate. Indeed, only a few studies directly compared juvenile and adult fdents regarding behavioral predictors of drug abuse. Moreover, some key features of drug diction have never been investigated in juvenile rats yet. For this very reason, we conducted a arge-scale behavioral comparison of adult and adolescent rats with the aim of dissecting their espective behavioral traits and vulnerabilities to drug addiction. We first have shown that juvenile rats exhibited an enhanced motor impulsivity, and a loss of control over reward seeking assessed by a persistent reward taking despite adverse consequences mild electric footshocks]. We also report that juvenile rats displayed a higher anxiety profile, ind we discuss why these behaviors might represent key underpinning mechanisms leading to an enhanced vulnerability to drug abuse. Meanwhile, we collected clear cut observations that do not support such an interpretation. In Articular, juvenile and adult rats displayed identical novelty-induced habituation and preference at are considered to represent two potent predictors of cocaine initiation and compulsive intake, "pre strikingly, juvenile rats were less attracted by cues predicting reward in a Pavlovian utoshaping task, suggesting a lower propensity for cues or context to trigger the reinstatement of a^previously extinguished reward seeking behavior. Finally, using a paradigm assessing schedule- ciuced polydipsia, juvenile and adult rats exhibited similar compulsive drinking, under control conditions and following a chronic cocaine treatment as well. Hence, these observations call for a cautious interpretation of adolescent vulnerability to drug use. In particular, we underlined that even the most compulsive young rats did not consume ärger amounts of cocaine than adults, nor exhibited larger efforts in a cue-induced relapse aradigm, despite a transient increased motivation for lever-pressing. And further, despite a higher ensitivity to the behavioral effects of cocaine, juvenile rats did not differ from adults in their ropensity to constantly prefer saccharin over cocaine in a discrete-choice procedure, even after a ?'Id chronic stress procedure. Altogether, our results shape an objective overview of the juvenile rats' behavior in relation to oth drug and non-drug rewards, suggesting a heterogeneous and task-specific profile. Despite elements potentially underlying a real risk for substance use, adolescent rats do not exhibit a ehavioral repertoire suggesting increased vulnerability for compulsive drug abuse. Our conclusions strongly encourage deeper neurobiological investigations of the developing brain, and also open a debate on a possible overestimation of juvenile rats' and teenager's risk to develop aladaptive behaviors and drug addiction. - L'addiction aux drogues est une pathologie d'origine multifactorielle, à laquelle certains individus sont plus vulnérables que d'autres. De nombreuses études cliniques et épidémiologiques suggèrent une consommation excessive de drogues pendant l'adolescence, et plusieurs explications ont été avancées pour justifier cette tendance, parmi lesquelles on note une augmentation de la recherche de sensation, une impulsivité plus marquée et une plus forte influence de l'entourage. Le rat juvénile présente de nombreuses caractéristiques développementales similaires à l'adolescence humaine. En revanche, la vulnérabilité des rats juvéniles à l'abus de drogue est encore sujette à caution. En effet, peu d'études ont directement comparé des traits de comportements pouvant refléter un accroissement du risque d'abus chez les rats juvéniles par comparaison aux rats adultes. En outre, certaines caractéristiques fondamentales de l'addiction chez l'homme n'ont pas encore été étudiées chez le rat adolescent. Ce travail de thèse s'est donc donné pour objectif de comparer le comportement de rats adultes vis-à-vis de celui de rats adolescents, afin d'évaluer dans quelle mesure ces derniers seraient plus vulnérables à l'abus de drogues. Nos résultats indiquent que les rats juvéniles présentent une augmentation des comportements impulsifs, ainsi qu'une plus grande persistance à rechercher de manière compulsive une récompense en dépit de légers chocs électriques. Les rats juvéniles présentent également un profil anxieux plus élevé, ce qui peut constituer une autre source de vulnérabilité. Cependant, certaines caractéristiques comportementales ne suggèrent pas de vulnérabilité chez les rats juvéniles. Aucune différence entre rats adultes et adolescents n'a été trouvée pour l'habituation et la préférence pour la nouveauté, deux traits prédisant l'initiation et la prise compulsive de drogue. De plus, nous avons montré que les rats adolescents attribuent moins d'intérêt à des stimuli prédisant la disponibilité d'une récompense, suggérant une vulnérabilité plus faible à la rechute induite par les stimuli associés à la prise de drogue. Une étude complémentaire des comportements compulsifs indique une absence de différence entre rats adultes et adolescents, à la fois en condition basale ou après un traitement chronique à la cocaïne. L'étude des comportements de prise de drogue ne va pas non plus dans le sens d'une vulnérabilité des rats adolescents. Bien que les rats compulsifs sélectionnés pendant la période juvénile présentent une plus grande motivation à prendre de la cocaïne, ils ne diffèrent ni dans la quantité de cocaïne consommée, ni dans la rechute induite par les stimuli environnementaux. En dépit d'une sensibilisation comportementale plus importante, les rats adolescents présentent la même préférence que les adultes face à un choix entre une drogue et une récompense alternative, suggérant une résilience à la cocaïne comparable à celle des adultes. Enfin, cette résilience pour la cocaïne n'est pas affectée par un stress chronique lors de l'adolescence. En résumé, cette étude dresse un regard objectif sur les comportements en lien avec une vulnérabilité à l'abus de drogues chez le rat juvénile, suggérant que celle-ci est hétérogène et spécifique au protocole utilisé. En dépit de certains éléments de vulnérabilité, les rats adolescents ne présentent pas d'attirance excessive pour la cocaïne, ni de prédisposition à la consommation compulsive de cette drogue. L'ensemble de ces éléments pourra constituer une base solide pour l'investigation neurobiologique du cerveau en développement, et ouvre un débat sur une possible surestimation de la vulnérabilité des rats juvéniles et de leurs homologues humains aux pathologies psychiatriques telles que l'addiction aux drogues.
Resumo:
Female-specific expression of the Xenopus laevis vitellogenin gene was reconstituted in vitro by addition of recombinant vaccinia-virus-produced estrogen receptor to nuclear extracts from male livers, in which this gene is silent. Transcription enhancement was at least 30 times and was selectively restricted to vitellogenin templates containing the estrogen-responsive unit. Thus, in male hepatocytes, estrogen receptor is the limiting regulatory factor that in the female liver controls efficient and accurate sex-specific expression of the vitellogenin gene. Furthermore, the Xenopus liver factor B, which is essential in addition to the estrogen receptor for the activation of this gene, was successfully replaced in the Xenopus extract by purified human nuclear factor I, identifying factor B of Xenopus as a functional homolog of this well-characterized human transcription factor.
Resumo:
Rapport de synthèse : Objectif de l'étude : étudier si l'administration orale ou vaginale d'hormones contraceptives influence les concentrations sériques d'hormone antimüllérienne (AMH). Design : essai prospectif chez des femmes recrutées par annonce. Les femmes désireuses d'avoir une contraception ont été randomisées entre une contraception orale et une contraception vaginale. Celles qui ne souhaitaient pas de contraception ont été incluses dans le groupe témoin. Cadre de l'étude : unité de médecine de la reproduction d'un hôpital universitaire. Patientes : vingt-quatre jeunes femmes en bonne santé avec des cycles menstruels réguliers qui n'avaient pas utilisé de contraception hormonale pendant les trois mois précédant l'étude. Intervention : contraception orale ou vaginale du 5ème au 25ème jour du cycle menstruel dans les groupes contraception versus pas de contraception dans le groupe témoin. Mesure d'issue : variations inter et intra-cycle des concentrations sériques d'AMH dans les trois groupes: groupe témoin en cycle spontané et groupes sous contraception oestroprogestative orale ou vaginale. Résultats : les fluctuations d'AMH observées pendant le cycle menstruel (variations intra-cycle) restent dans les valeurs des variations entre deux cycles (variations inter-cycles) tant chez les femmes en cycle spontané que chez les femmes sous contraception orale ou vaginale. Conclusions : nos résultats confirment que les concentrations sériques d'AMH restent stables pendant le cycle menstruel et indiquent qu'elles ne sont pas influencées par l'administration exogène de stéroïdes sexuels contraceptifs, que ce soit par voie orale ou vaginale.
Resumo:
Abstract Sex-determining systems often undergo high rates of turnover but for reasons that remain largely obscure. Two recent evolutionary models assign key roles, respectively, to sex-antagonistic (SA) mutations occurring on autosomes and to deleterious mutations accumulating on sex chromosomes. These two models capture essential but distinct key features of sex-chromosome evolution; accordingly, they make different predictions and present distinct limitations. Here we show that a combination of features from the two models has the potential to generate endless cycles of sex-chromosome transitions: SA alleles accruing on a chromosome after it has been co-opted for sex induce an arrest of recombination; the ensuing accumulation of deleterious mutations will soon make a new transition ineluctable. The dynamics generated by these interactions share several important features with empirical data, namely, (i) that patterns of heterogamety tend to be conserved during transitions and (ii) that autosomes are not recruited randomly, with some chromosome pairs more likely than others to be co-opted for sex.