171 resultados para Renal function


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although physical activity is recommended in patients on maintenance hemodialysis (MHD), randomized controlled trials testing the effects of exercise in this population have given conflicting results. In general, aerobic exercises mostly failed to produce improvements in physical function, whereas resistance exercises, although less studied, appeared to be more promising. The use of sophisticated materials such as leg press and free weights may preclude widespread application of resistance training in patients on MHD. Simple and cheap elastic bands may thus be an attractive alternative. We tested the feasibility of a supervised intradialytic resistance band exercise training program, and its effects on physical function, in patients on MHD. A total of 11 unselected adult patients on MHD from our center, aged 70 ± 10.7 (mean ± standard deviation) years, including 8 men and 3 women, accepted to follow the program under the supervision of qualified physiotherapists. Thirty-six exercise sessions of moderate intensity (twice a week, mean duration 40 minutes each, during 4.5 to 6 months), mainly involving leg muscles against an elastic resistance, were performed. The exercise program was well tolerated and all patients completed it. Statistically significant improvements were observed in the following tests: Tinetti test, 23.9 ± 3.9 points before versus 25.7 ± 3.5 points after the program (P = .022); the Timed Up and Go test, 12.1 ± 6.6 versus 10 ± 5.8 seconds (P = .0156). Improvements in the 6-minute walk distance and in the one-leg balance tests just failed to reach statistical significance. In this single-center pilot study, an intradialytic resistance band exercise program was feasible, well tolerated, and showed encouraging results on physical function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Genome-wide association studies (GWASs) have identified multiple loci associated with cross-sectional eGFR, but a systematic genetic analysis of kidney function decline over time is missing. Here we conducted a GWAS meta-analysis among 63,558 participants of European descent, initially from 16 cohorts with serial kidney function measurements within the CKDGen Consortium, followed by independent replication among additional participants from 13 cohorts. In stage 1 GWAS meta-analysis, single-nucleotide polymorphisms (SNPs) at MEOX2, GALNT11, IL1RAP, NPPA, HPCAL1, and CDH23 showed the strongest associations for at least one trait, in addition to the known UMOD locus, which showed genome-wide significance with an annual change in eGFR. In stage 2 meta-analysis, the significant association at UMOD was replicated. Associations at GALNT11 with Rapid Decline (annual eGFR decline of 3 ml/min per 1.73 m(2) or more), and CDH23 with eGFR change among those with CKD showed significant suggestive evidence of replication. Combined stage 1 and 2 meta-analyses showed significance for UMOD, GALNT11, and CDH23. Morpholino knockdowns of galnt11 and cdh23 in zebrafish embryos each had signs of severe edema 72 h after gentamicin treatment compared with controls, but no gross morphological renal abnormalities before gentamicin administration. Thus, our results suggest a role in the deterioration of kidney function for the loci GALNT11 and CDH23, and show that the UMOD locus is significantly associated with kidney function decline.Kidney International advance online publication, 10 December 2014; doi:10.1038/ki.2014.361.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Notch is a membrane inserted protein activated by the membrane-inserted γ-secretase proteolytic complex. The Notch pathway is a potential therapeutic target for the treatment of renal diseases but also controls the function of other cells, requiring cell-targeting of Notch antagonists. Toward selective targeting, we have developed the γ-secretase inhibitor-based prodrugs 13a and 15a as substrates for γ-glutamyltranspeptidase (γ-GT) and/or γ-glutamylcyclotransferase (γ-GCT) as well as aminopeptidase A (APA), which are overexpressed in renal diseases, and have evaluated them in experimental in vitro and in vivo models. In nondiseased mice, the cleavage product from Ac-γ-Glu-γ-secretase inhibitor prodrug 13a (γ-GT-targeting and γ-GCT-targeting) but not from Ac-α-Glu-γ-secretase inhibitor prodrug 15a (APA-targeting) accumulated in kidneys when compared to blood and liver. Potential nephroprotective effects of the γ-secretase inhibitor targeted prodrugs were investigated in vivo in a mouse model of acute kidney injury, demonstrating that the expression of Notch1 and cleaved Notch1 could be selectively down-regulated upon treatment with the Ac-γ-Glu-γ-secretase-inhibitor 13a.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Uromodulin (Tamm-Horsfall protein) is exclusively produced by the kidney and is the most abundant protein excreted in normal urine. The level of uromodulin in urine could represent a useful biomarker for renal tubular function. The study of Garimella et al. adds elements into the debate, by suggesting that, in elderly adults, low urinary uromodulin concentrations in spot urine identify people at risk of progressive kidney disease and mortality above and beyond established markers of kidney disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND AND OBJECTIVES: Allelic variants in UMOD, the gene coding for uromodulin, are associated with rare tubulointerstitial kidney disorders and risk of CKD and hypertension in the general population. The factors associated with uromodulin excretion in the normal population remain largely unknown, and were therefore explored in this study. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: Urinary uromodulin excretion was measured using a validated ELISA in two population-based cohorts that included more than 6500 individuals. The Swiss Kidney Project on Genes in Hypertension study (SKIPOGH) included 817 adults (mean age±SD, 45±17 years) who underwent renal ultrasonography and performed a 24-hour urine collection. The Cohorte Lausannoise study included 5706 adults (mean age, 53±11 years) with fresh spot morning urine samples. We calculated eGFRs using the CKD-Epidemiology Collaboration formula and by 24-hour creatinine clearance. RESULTS: In both studies, positive associations were found between uromodulin and urinary sodium, chloride, and potassium excretion and osmolality. In SKIPOGH, 24-hour uromodulin excretion (median, 41 [interquartile range, 29-57] mg/24 h) was positively associated with kidney length and volume and with creatinine excretion and urine volume. It was negatively associated with age and diabetes. Both spot uromodulin concentration and 24-hour uromodulin excretion were linearly and positively associated (multivariate analyses) with eGFR<90 ml/min per 1.73 m(2). CONCLUSION: Age, creatinine excretion, diabetes, and urinary volume are independent clinical correlates of urinary uromodulin excretion. The associations of uromodulin excretion with markers of tubular functions and kidney dimensions suggest that it may reflect tubule activity in the general population.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reduced glomerular filtration rate defines chronic kidney disease and is associated with cardiovascular and all-cause mortality. We conducted a meta-analysis of genome-wide association studies for estimated glomerular filtration rate (eGFR), combining data across 133,413 individuals with replication in up to 42,166 individuals. We identify 24 new and confirm 29 previously identified loci. Of these 53 loci, 19 associate with eGFR among individuals with diabetes. Using bioinformatics, we show that identified genes at eGFR loci are enriched for expression in kidney tissues and in pathways relevant for kidney development and transmembrane transporter activity, kidney structure, and regulation of glucose metabolism. Chromatin state mapping and DNase I hypersensitivity analyses across adult tissues demonstrate preferential mapping of associated variants to regulatory regions in kidney but not extra-renal tissues. These findings suggest that genetic determinants of eGFR are mediated largely through direct effects within the kidney and highlight important cell types and biological pathways.