257 resultados para KAPPA-OPIOID RECEPTORS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The neurofilament (NF) proteins (NF-H, NF-M, and NF-L for high, medium, and low molecular weights) play a crucial role in the organization of neuronal shape and function. In a preliminary study, the abundance of total NF-L was shown to be decreased in brains of opioid addicts. Because of the potential relevance of NF abnormalities in opioid addiction, we quantitated nonphosphorylated and phosphorylated NF in postmortem brains from 12 well-defined opioid abusers who had died of an opiate overdose (heroin or methadone). Levels of NF were assessed by immunoblotting techniques using phospho-independent and phospho-dependent antibodies, and the relative (% changes in immunoreactivity) and absolute (changes in ng NF/microg total protein) amounts of NF were calculated. Decreased levels of nonphosphorylated NF-H (42-32%), NF-M (14-9%) and NF-L (30-29%) were found in the prefrontal cortex of opioid addicts compared with sex, age, and postmortem delay-matched controls. In contrast, increased levels of phosphorylated NF-H (58-41%) and NF-M (56-28%) were found in the same brains of opioid addicts. The ratio of phosphorylated to nonphosphorylated NF-H in opioid addicts (3.4) was greater than that in control subjects (1.6). In the same brains of opioid addicts, the levels of protein phosphatase of the type 2A were found unchanged, which indicated that the hyperphosphorylation of NF-H is not the result of a reduced dephosphorylation process. The immunodensities of GFAP (the specific glial cytoskeletol protein), alpha-internexin (a neuronal filament related to NF-L) and synaptophysin (a synapse-specific protein) were found unchanged, suggesting a lack of gross changes in glial reaction, other intermediate filaments of the neuronal cytoskeletol, and synaptic density in the prefrontal cortex of opioid addicts. These marked reductions in total NF proteins and the aberrant hyperphosphorylation of NF-H in brains of opioid addicts may play a significant role in the cellular mechanisms of opioid addiction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background. Toll-like receptors (TLR) recognize a variety of ligands, including pathogen-associated molecular patterns and link innate and adaptive immunity. Individual receptors can be up-regulated during infection and inflammation. We examined the expression of selected TLRs at the protein level in various types of renal disease.Methods. Frozen sections of renal biopsies were stained with monoclonal antibodies to TLR-2, -4 and -9.Results. Up-regulation of the three TLRs studied was seen, although the extent was modest. TLR-2- and -4-positive cells belonged to the population of infiltrating inflammatory cells; only in the case of TLR-9 were intrinsic glomerular cells positive in polyoma virus infection and haemolytic uraemic syndrome (HUS).Conclusions. Evidence for the involvement of the three TLRs tested in a variety of human renal diseases was found. These findings add to our understanding of the role of the innate immune system in kidney disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transcriptional activity relies on coregulators that modify the chromatin structure and serve as bridging factors between transcription factors and the basal transcription machinery. Using the DE domain of human peroxisome proliferator-activated receptor gamma (PPARgamma) as bait in a yeast two-hybrid screen of a human adipose tissue library, we isolated the scaffold attachment factor B1 (SAFB1/HET/HAP), which was previously shown to be a corepressor of estrogen receptor alpha. We show here that SAFB1 has a very broad tissue expression profile in human and is also expressed all along mouse embryogenesis. SAFB1 interacts in pull-down assays not only with PPARgamma but also with all nuclear receptors tested so far, albeit with different affinities. The association of SAFB1 and PPARgamma in vivo is further demonstrated by fluorescence resonance energy transfer (FRET) experiments in living cells. We finally show that SAFB1 is a rather general corepressor for nuclear receptors. Its change in expression during the early phases of adipocyte and enterocyte differentiation suggests that SAFB1 potentially influences cell proliferation and differentiation decisions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated if changes in hepatic lipid metabolism produced by old age are related to changes in liver peroxisome proliferator-activated receptor alpha (PPARalpha). Our results indicate that 18-month-old rats showed a marked decrease in the expression and activity of liver PPARalpha, as shown by significant reductions in PPARalpha mRNA, protein and binding activity, resulting in a reduction in the relative mRNA levels of PPARalpha target genes, such as liver-carnitine-palmitoyl transferase-I (CPT-I) and mitochondrial medium-chain acyl-CoA dehydrogenase (MCAD). Further, in accordance with a liver PPARalpha deficiency in old rats, treatment of old animals with a therapeutic dose of gemfibrozil (GFB) (3mg/kg per day, 21 days) was ineffective in reducing plasma triglyceride concentrations (TG), despite attaining a 50% reduction in TG when GFB was administered to young animals at the same dose and length of treatment. We hypothesize that the decrease in hepatic PPARalpha can be related to a state of leptin resistance present in old animals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peroxisome proliferator activated receptors are ligand activated transcription factors belonging to the nuclear hormone receptor superfamily. Three cDNAs encoding such receptors have been isolated from Xenopus laevis (xPPAR alpha, beta, and gamma). Furthermore, the gene coding for xPPAR beta has been cloned, thus being the first member of this subfamily whose genomic organization has been solved. Functionally, xPPAR alpha as well as its mouse and rat homologs are thought to play an important role in lipid metabolism due to their ability to activate transcription of a reporter gene through the promoter of the acyl-CoA oxidase (ACO) gene. ACO catalyzes the rate limiting step in the peroxisomal beta-oxidation of fatty acids. Activation is achieved by the binding of xPPAR alpha on a regulatory element (DR1) found in the promoter region of this gene, xPPAR beta and gamma are also able to recognize the same type of element and are, as PPAR alpha, able to form heterodimers with retinoid X receptor. All three xPPARs appear to be activated by synthetic peroxisome proliferators as well as by naturally occurring fatty acids, suggesting that a common mode of action exists for all the members of this subfamily of nuclear hormone receptors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Preclinical studies implicate a role for α₁-noradrenergic receptors in the effects of psychostimulants, including 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy"). The present study evaluated the effects of the α₁-noradrenergic receptor antagonist doxazosin on the acute pharmacodynamic and pharmacokinetic response to MDMA in 16 healthy subjects. Doxazosin (8 mg/d) or placebo was administered for 3 days before MDMA (125 mg) or placebo using a randomized, double-blind, placebo-controlled, 4-session, crossover design. Doxazosin reduced MDMA-induced elevations in blood pressure, body temperature, and moderately attenuated positive mood but enhanced tachycardia associated with MDMA. The results indicate that α₁-adrenergic receptors contribute to the acute cardiostimulant and to a minor extent possibly also to the thermogenic and euphoric effects of MDMA in humans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Testis size and sperm production are directly correlated to the total number of adult Sertoli cells (SCs). Although the establishment of an adequate number of SCs is crucial for future male fertility, the identification and characterization of the factors regulating SC survival, proliferation, and maturation remain incomplete. To investigate whether the IGF system is required for germ cell (GC) and SC development and function, we inactivated the insulin receptor (Insr), the IGF1 receptor (Igf1r), or both receptors specifically in the GC lineage or in SCs. Whereas ablation of insulin/IGF signaling appears dispensable for GCs and spermatogenesis, adult testes of mice lacking both Insr and Igf1r in SCs (SC-Insr;Igf1r) displayed a 75% reduction in testis size and daily sperm production as a result of a reduced proliferation rate of immature SCs during the late fetal and early neonatal testicular period. In addition, in vivo analyses revealed that FSH requires the insulin/IGF signaling pathway to mediate its proliferative effects on immature SCs. Collectively, these results emphasize the essential role played by growth factors of the insulin family in regulating the final number of SCs, testis size, and daily sperm output. They also indicate that the insulin/IGF signaling pathway is required for FSH-mediated SC proliferation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bcl10 plays an essential role in the adaptive immune response, because Bcl10-deficient lymphocytes show impaired Ag receptor-induced NF-kappaB activation and cytokine production. Bcl10 is a phosphoprotein, but the physiological relevance of this posttranslational modification remains poorly defined. In this study, we report that Bcl10 is rapidly phosphorylated upon activation of human T cells by PMA/ionomycin- or anti-CD3 treatment, and identify Ser(138) as a key residue necessary for Bcl10 phosphorylation. We also show that a phosphorylation-deficient Ser(138)/Ala mutant specifically inhibits TCR-induced actin polymerization yet does not affect NF-kappaB activation. Moreover, silencing of Bcl10, but not of caspase recruitment domain-containing MAGUK protein-1 (Carma1) induces a clear defect in TCR-induced F-actin formation, cell spreading, and conjugate formation. Remarkably, Bcl10 silencing also impairs FcgammaR-induced actin polymerization and phagocytosis in human monocytes. These results point to a key role of Bcl10 in F-actin-dependent immune responses of T cells and monocytes/macrophages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF family that induces cancer cell death by apoptosis with some selectivity. TRAIL-induced apoptosis is mediated by the transmembrane receptors death receptor 4 (DR4) (also known as TRAIL-R1) and DR5 (TRAIL-R2). TRAIL can also bind decoy receptor 1 (DcR1) (TRAIL-R3) and DcR2 (TRAIL-R4) that fail to induce apoptosis since they lack and have a truncated cytoplasmic death domain, respectively. In addition, DcR1 and DcR2 inhibit DR4- and DR5-mediated, TRAIL-induced apoptosis and we demonstrate here that this occurs through distinct mechanisms. While DcR1 prevents the assembly of the death-inducing signaling complex (DISC) by titrating TRAIL within lipid rafts, DcR2 is corecruited with DR5 within the DISC, where it inhibits initiator caspase activation. In addition, DcR2 prevents DR4 recruitment within the DR5 DISC. The specificity of DcR1- and DcR2-mediated TRAIL inhibition reveals an additional level of complexity for the regulation of TRAIL signaling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Drugs of abuse, such as psychostimulants and opiates, are generally considered as exerting their locomotor and rewarding effects through an increased dopaminergic transmission in the nucleus accumbens. Noradrenergic transmission may also be implicated because most psychostimulants increase norepinephrine (NE) release, and numerous studies have indicated interactions between noradrenergic and dopaminergic neurons through alpha1-adrenergic receptors. However, analysis of the effects of psychostimulants after either destruction of noradrenergic neurons or pharmacological blockade of alpha1-adrenergic receptors led to conflicting results. Here we show that the locomotor hyperactivities induced by d-amphetamine (1-3 mg/kg), cocaine (5-20 mg/kg), or morphine (5-10 mg/kg) in mice lacking the alpha1b subtype of adrenergic receptors were dramatically decreased when compared with wild-type littermates. Moreover, behavioral sensitizations induced by d-amphetamine (1-2 mg/kg), cocaine (5-15 mg/kg), or morphine (7.5 mg/kg) were also decreased in knock-out mice when compared with wild-type. Ruling out a neurological deficit in knock-out mice, both strains reacted similarly to novelty, to intraperitoneal saline, or to the administration of scopolamine (1 mg/kg), an anti-muscarinic agent. Finally, rewarding properties could not be observed in knock-out mice in an oral preference test (cocaine and morphine) and conditioned place preference (morphine) paradigm. Because catecholamine tissue levels, autoradiography of D1 and D2 dopaminergic receptors, and of dopamine reuptake sites and locomotor response to a D1 agonist showed that basal dopaminergic transmission was similar in knock-out and wild-type mice, our data indicate a critical role of alpha1b-adrenergic receptors and noradrenergic transmission in the vulnerability to addiction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutations in the TNF family ligand EDA1 cause X-linked hypohidrotic ectodermal dysplasia (XLHED), a condition characterized by defective development of skin appendages. The EDA1 protein displays a proteolytic processing site responsible for its conversion to a soluble form, a collagen domain, and a trimeric TNF homology domain (THD) that binds the receptor EDAR. In-frame deletions in the collagen domain reduced the thermal stability of EDA1. Removal of the collagen domain decreased its activity about 100-fold, as measured with natural and engineered EDA1-responsive cell lines. The collagen domain could be functionally replaced by multimerization domains or by cross-linking antibodies, suggesting that it functions as an oligomerization unit. Surprisingly, mature soluble EDA1 containing the collagen domain was poorly active when administered in newborn, EDA-deficient (Tabby) mice. This was due to a short stretch of basic amino acids located at the N terminus of the collagen domain that confers EDA1 with proteoglycan binding ability. In contrast to wild-type EDA1, EDA1 with mutations in this basic sequence was a potent inducer of tail hair development in vivo. Thus, the collagen domain activates EDA1 by multimerization, whereas the proteoglycan-binding domain may restrict the distribution of endogeneous EDA1 in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose:Chemokine receptors are transmembrane G coupled proteins that might be involved in the directional metastatic migration of tumor cells to specific organs. CXCR4 and CCR7 have been implicated in the selective metastasis of cutaneous melanoma cells to lung and lymph node, respectively. CCR6 is expressed in metastases from colon, ovarian and thyroid carcinomas to the liver where its ligand, CCL20, is constitutively expressed. As uveal melanomas frequently metastasize to the liver, we hypothesized that specific chemokine receptors and their respective ligands might be involved in metastasis of uveal melanoma to the liver. Methods:Tissue microarrays were constructed using 100 non irradiated primary uveal melanomas and 84 liver metastases, as well as 12 non liver metastases, collected from the files of Jules Gonin Eye Hospital and Pathology Institute, University of Lausanne. Immunohistochemistry was performed using anti-human CXCR4, SDF1, CCR7, CCL21 and CCR6 antibodies. Results:CXCR4 expression was detected in 36% of primary uveal melanomas and in 63% of liver metastases but no expression was found in metastases to other organs, except for one pancreatic metastasis. SDF1 expression was detected in 3% of primary uveal melanomas and in 26% of liver metastases, as well as in pancreas, lymph node and breast metastases. CCR6 expression was observed in the majority of primary uveal melanomas and liver metastases (73 and 88%, respectively). In addition, CCR6 was also detected in 9 metastases to other organs (pancreas, thyroid, lymph node, skin and breast). CCR7 and CCL21 were neither detected in primary uveal melanoma, nor in the metastases. Conclusions:Chemokine receptors CCR6 and CXCR4 are expressed in a large number of primary uveal melanomas and in uveal melanoma metastases to the liver. CCR6 is also expressed in a small number of metastases to other organs. These findings form the basis for further studies on the potential involvement of CXCR4 and CCR6 in the selective metastasis of uveal melanoma to the liver.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of the gluco-incretin hormones GIP and GLP-1 in the control of beta cell function was studied by analyzing mice with inactivation of each of these hormone receptor genes, or both. Our results demonstrate that glucose intolerance was additively increased during oral glucose absorption when both receptors were inactivated. After intraperitoneal injections, glucose intolerance was more severe in double- as compared to single-receptor KO mice, and euglycemic clamps revealed normal insulin sensitivity, suggesting a defect in insulin secretion. When assessed in vivo or in perfused pancreas, insulin secretion showed a lack of first phase in Glp-1R(-/-) but not in Gipr(-/-) mice. In perifusion experiments, however, first-phase insulin secretion was present in both types of islets. In double-KO islets, kinetics of insulin secretion was normal, but its amplitude was reduced by about 50% because of a defect distal to plasma membrane depolarization. Thus, gluco-incretin hormones control insulin secretion (a) by an acute insulinotropic effect on beta cells after oral glucose absorption (b) through the regulation, by GLP-1, of in vivo first-phase insulin secretion, probably by an action on extra-islet glucose sensors, and (c) by preserving the function of the secretory pathway, as evidenced by a beta cell autonomous secretion defect when both receptors are inactivated.