192 resultados para REACTIVE MECHANISM


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intrathymic expression of endogenous mouse mammary tumor virus (MMTV)-encoded superantigens (SAg) induces the clonal deletion of T cells bearing SAg-reactive T-cell receptor (TCR) Vbeta elements. However, the identity of the thymic antigen-presenting cells (APC) involved in the induction of SAg tolerance remains to be defined. We have analyzed the potential of dendritic cells (DC) to mediate the clonal deletion of Mtv-7-reactive TCR alphabeta P14 transgenic thymocytes in an in vitro assay. Our results show that both thymic and splenic DC induced the deletion of TCR transgenic double positive (DP) thymocytes. DC appear to be more efficient than splenic B cells as negatively selecting APC in this experimental system. Interestingly, thymic and splenic DC display a differential ability to induce CD4+ SP thymocyte proliferation. These observations suggest that thymic DC may have an important role in the induction of SAg tolerance in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Elevated circulating concentrations in modified LDL-cholesterol particles (e.g. oxidised LDL) and low levels in HDL increase not only the risk for diabetic patients to develop cardiovascular diseases but also may contribute to development and progression of diabetes by directly having adverse effects on β-cells. Chronic exposure of β-cells to 2 mM human oxidised LDL-cholesterol (oxLDL) increases the rate of apoptosis, reduce insulin biosynthesis and the secretory capacity of the cells in response to nutrients. In line with the protective role, HDL efficiently antagonised the harmful effects of ox- LDL, suggesting that low levels of HDL would be inefficient to protect β-cells against oxLDL attack in patients. Activation of endoplasmic reticulum (ER) stress is pointed out to contribute to β-cell dysfunction elicited by environmental stressors. In this study we investigated whether activation of ER stress is required for oxLDL to mediate detrimental effects on β-cells and we tested the potential antagonist properties of HDL: The mouse MIN6 insulin-secreting cells were cultured with 2 mM of LDL-cholesterol preparation (native or in vitro oxidized) in the presence or absence of 1 mM of HDL-cholesterol or the ER stress inhibitor 4-phenylbutyrate (4-PBA): Prolonged exposure of MIN6 cells to 2 mM oxLDL-cholesterol for 48 hours led to an increase in expression of ER stress markers such as ATF4, CHOP and p58 and stimulated the splicing of XBP-1 whereas, induction of these markers was not observable in the cells cultured with native LDL. Treatment of the cells with the 4-PBA chemical chaperone molecule efficiently blocked activation of the ER stress markers induced by oxLDL. The latter mediates β-cell dysfunction and apoptosis by diminishing the expression of islet brain 1 (IB1) and Bcl2. The levels of these two proteins were preserved in the cells that were co-treated with oxLDL and the 4-PBA. Consistent with this result we found that blockade of ER stress activation alleviated the loss of insulin synthesis and abolished apoptosis evoked by oxLDL. However incubation of the cells with 4-PBA did not prevent impairment of insulin secretion elicited by oxLDL, indicating that ER stress is not responsible for the oxLDL-mediated defect of insulin secretion. Co-incubation of the cells with HDL mimicked the effects of 4-PBA on the expression of IB1 and Blc2 and thereby counteracted oxLDL attacks on insulin synthesis and cell survivals. We found that HDL efficiently inhibited activation of the ER stress mediated by oxLDL: These data highlight the contribution of the ER stress in the defects of insulin synthesis and cell survivals induced by oxLDL and emphasize the potent role of HDL to counter activation of the oxLDL-mediated ER-stress activation:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract The amygdala is a group of nuclei in the temporal lobe of the brain that plays a crucial role in anxiety and fear behavior. Sensory information converges in the basolateral and lateral nuclei of the amygdala, which have been the first regions in the brain where the acquisition of new (fear) memories has been associated with long term changes in synaptic transmission. These nuclei, in turn, project to the central nucleus of the amygdala. The central amygdala, through its extensive projections to numerous nuclei in the midbrain and brainstem, plays a pivotal role in the orchestration of the rapid autonomic and endocrine fear responses. In the central amygdala a large number of neuropeptides and receptors is expressed, among which high levels of vasopressin and oxytocin receptors. Local injections of these peptides into the amygdala modulate several aspects of the autonomic fear reaction. Interestingly, their effects are opposing: vasopressin tends to enhance the fear reactions, whereas oxytocin has anxiolytic effects. In order to investigate the neurophysiological mechanisms that could underlie this opposing modulation of the fear behavior, we studied the effects of vasopressin and oxytocin on the neuronal activity in an acute brain slice preparation of the rat central amygdala. We first assessed the effects of vasopressin and oxytocin on the spontaneous activity of central amygdala neurons. Extracellular single unit recordings revealed two major populations of neurons: a majority of neurons was excited by vasopressin and inhibited by oxytocin, whereas other neurons were only excited by oxytocin receptor activation. The inhibitory effect of oxytocin could be reduced by the block of GABAergic transmission, whereas the excitatory effects of vasopressin and oxytocin were not affected. In a second step we identified the cellular mechanisms for the excitatory effects of both peptides as well as the morphological and biochemical mechanisms underlying the opposing effects, by using sharp electrode recordings together with intracellular labelings. We revealed that oxytocin-excited neurons are localized in the lateral part (CeL) whereas vasopressin excited cells are found in the medial part of the central amygdala (CeM). The tracing of the neuronal morphology showed that the axon collaterals of the oxytocin-excited neurons project from the CeL, far into the CeM. Combined immunohistochemical stainings indicated that these projections are GABAergic. In the third set of experiments we investigated the synaptic interactions between the two identified cell populations. Whole-cell patch-clamp recordings in the CeM revealed that the inhibitory effect of oxytocin was caused by the massive increase of inhibitory GABAergic currents, which was induced by the activation of CeL neurons. Finally, the effects of vasopressin and oxytocin on evoked activity were investigated. We found on the one hand, that the probability of evoking action potentials in the CeM by stimulating the basolateral amygdala afferents was enhanced under vasopressin, whereas it decreased under oxytocin. On the other hand, the impact of cortical afferents stimulation on the CeL neurons was enhanced by oxytocin application. Taken together, these findings have allowed us to develop a model, in which the opposing behavioral effects of vasopressin and oxytocin are caused by a selective activation of two distinct populations of neurons in the GABAergic network of the central amygdala. Our model could help to develop new anxiolytic treatments, which modulate simultaneously both receptor systems. By acting on a GABAergic network, such treatments can further be tuned by combinations with classical benzodiazepines. Résumé: L'amygdale est un groupe de noyaux cérébraux localisés dans le lobe temporal. Elle joue un rôle essentiel dans les comportements liés à la peur et l'anxiété. L'information issue des aires sensorielles converge vers les noyaux amygdaliens latéraux et basolatéraux, qui sont les projections vers différents noyaux du tronc cérébral et de l'hypothalamus, joue un rôle clef premières régions dans lesquelles il a été démontré que l'acquisition d'une nouvelle mémoire (de peur) était associée à des changements à long terme de la transmission synaptique. Ces noyaux envoient leurs projections sur l'amygdale centrale, qui à travers ses propres dans l'orchestration des réponses autonomes et endocrines de peur. Le contrôle de l'activité neuronale dans l'amygdale centrale module fortement la réaction de peur. Ainsi, un grand nombre de neuropeptides sont spécifiquement exprimés dans l'amygdale centrale et un bon nombre d'entre eux interfère dans la réaction de peur et d'anxiété. Chez les rats, une forte concentration de récepteurs à l'ocytocine et à la vasopressine est exprimée dans le noyau central, et l'injection de ces peptides dans l'amygdale influence différents aspects de la réaction viscérale associée à la peur. Il est intéressant de constater que ces peptides exercent des effets opposés. Ainsi, la vasopressine augmente la réaction de peur alors que l'ocytocine a un effet anxiolytique. Afin d'investiguer les mécanismes neurophysiologiques responsables de ces effets opposés, nous avons étudié l'effet de la vasopressine et de l'ocytocine sur l'activité neuronale de préparations de tranches de cerveau de rats contenant entre autres de l'amygdale centrale. Tout d'abord, notre intérêt s'est porté sur les effets de ces deux neuropeptides sur l'activité spontanée dans l'amygdale centrale. Des enregistrements extracellulaires ont révélé différentes populations de neurones ; une majorité était excitée par la vasopressine et inhibée par l'ocytocine ; d'autres étaient seulement excités par l'activation du récepteur à l'ocytocine. L'effet inhibiteur de l'ocytocine a pu être réduit par l'inhibition de la transmission GABAergique, alors que ses effets excitateurs n'étaient pas affectés. Dans un deuxième temps, nous avons identifié les mécanismes cellulaires responsables de l'effet excitateur de ces deux peptides et analysé les caractéristiques morphologiques et biochimiques des neurones affectés. Des enregistrements intracellulaires ont permis de localiser les neurones excités par l'ocytocine dans la partie latérale de l'amygdale centrale (CeL), et ceux excités par la vasopressine dans sa partie médiale (CeM). Le traçage morphologique des neurones a révélé que les collatérales axonales des cellules excitées par l'ocytocine projetaient du CeL loin dans le CeM. De plus, des colorations immuno-histochimiques ont révélé que ces projections étaient GABAergiques. Dans un troisième temps, nous avons étudié les interactions synaptiques entre ces deux populations de cellules. Les enregistrements en whole-cell patch-clamp dans le CeM ont démontré que les effets inhibiteurs de l'ocytocine résultaient de l'augmentation massive des courants GABAergique résultant de l'activation des neurones dans le CeL. Finalement, les effets de l'ocytocine et de la vasopressine sur l'activité évoquée ont été étudiés. Nous avons pu montrer que la probabilité d'évoquer un potentiel d'action dans le CeM, par stimulation de l'amygdale basolatérale, était augmentée sous l'effet de la vasopressine et diminuée sous l'action de l'ocytocine. Par contre, l'impact de la stimulation des afférences corticales sur les neurones du CeL était augmenté par l'application de l'ocytocine. L'ensemble de ces résultats nous a permis de développer un modèle dans lequel les effets comportementaux opposés de la vasopressine et de l'ocytocine sont causés par une activation sélective des deux différentes populations de neurones dans un réseau GABAergique. Un tel modèle pourrait mener au développement de nouveaux traitements anxiolytiques en modulant l'activité des deux récepteurs simultanément. En agissant sur un réseau GABAergique, les effets d'un tel traitement pourraient être rendus encore plus sélectifs en association avec des benzodiazépines classiques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have shown that indels in gp120 V4 are associated to the presence of duplicated and palindromic sequences, suggesting that they may be produced by strand-slippage misalignment mechanism. Indels in V4 involved region-specific duplications 9 to 15 bp long, and repeats of various lengths, associated to trinucleotides AAT. No duplications were found in V3 and C3. The frequency of palindromic sequences in individual genes was found to be significantly higher in gp120 (p < or = 3.00E-7), and significantly lower in Tat (p < or = 9.00E-7) than the average frequency calculated over the full genome. The finding of elements of misalignment in association with indels in V4 suggests that these mutations may occur in proviral DNA after integration of HIV into the host genome. It also implies that occurrence of large indels in gp120 is not random but is directed by the presence and distribution of elements of misalignment in the HIV genome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Cuff inflation at the arm is known to cause an instantaneous rise in blood pressure, which might be due to the discomfort of the procedure and might interfere with the precision of the blood pressure measurement. In this study, we compared the reactive rise in blood pressure induced by cuff inflation when the cuff was placed at the upper arm level and at the wrist. PARTICIPANTS AND METHODS: The reactive rise in systolic and diastolic blood pressure to cuff inflation was measured in 34 normotensive participants and 34 hypertensive patients. Each participant was equipped with two cuffs, one around the right upper arm (OMRON HEM-CR19, 22-32 cm) and one around the right wrist (OMRON HEM-CS 19, 17-22 cm; Omron Health Care Europe BV, Hoofddorp, The Netherlands). The cuffs were inflated in a double random order (maximal cuff pressure and position of the cuff) with two maximal cuff pressures: 180 and 240 mmHg. The cuffs were linked to an oscillometric device (OMRON HEM 907; Omron Health Care). Simultaneously, blood pressure was measured continuously at the middle finger of the left hand using photoplethysmography. Three measurements were made at each level of blood pressure at the arm and at the wrist, and the sequence of measurements was randomized. RESULTS: In normotensive participants, no significant difference was observed in the reactive rise in blood pressure when the cuff was inflated either at the arm or at the wrist irrespective of the level of cuff inflation. Inflating a cuff at the arm, however, induced a significantly greater rise in blood pressure than inflating it at the wrist in hypertensive participants for both systolic and diastolic pressures (P<0.01), and at both levels of cuff inflation. The blood pressure response to cuff inflation was independent of baseline blood pressure. CONCLUSIONS: The results show that in hypertensive patients, cuff inflation at the wrist produces a smaller reactive rise in blood pressure. The difference between the arm and the wrist is independent of the patient's level of blood pressure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tumor Ag SSX-2 (HOM-MEL-40) was found by serological identification of Ags by recombinant expression cloning and was shown to be a cancer/testis Ag expressed in a wide variety of tumors. It may therefore represent a source of CD8(+) T cell epitopes useful for specific immunotherapy of cancer. To identify potential SSX-2-derived epitopes that can be recognized by CD8(+) T cells, we used an approach that combined: 1) the in vitro proteasomal digestion of precursor peptides overlapping the complete SSX-2 sequence; 2) the prediction of SSX-2-derived peptides with an appropriate HLA-A2 binding score; and 3) the analysis of a tumor-infiltrated lymph node cell population from an HLA-A2(+) melanoma patient with detectable anti-SSX-2 serum Abs. This strategy allowed us to identify peptide SSX-2(41-49) as an HLA-A2-restricted epitope. SSX2(41-49)-specific CD8(+) T cells were readily detectable in the tumor-infiltrated lymph node population by multimer staining, and CTL clones isolated by multimer-guided cell sorting were able to lyse HLA-A2(+) tumor cells expressing SSX-2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inflammation is one possible mechanism underlying the associations between mental disorders and cardiovascular diseases (CVD). However, studies on mental disorders and inflammation have yielded inconsistent results and the majority did not adjust for potential confounding factors. We examined the associations of several pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α) and high sensitive C-reactive protein (hsCRP) with lifetime and current mood, anxiety and substance use disorders (SUD), while adjusting for multiple covariates. The sample included 3719 subjects, randomly selected from the general population, who underwent thorough somatic and psychiatric evaluations. Psychiatric diagnoses were made with a semi-structured interview. Major depressive disorder was subtyped into "atypical", "melancholic", "combined atypical-melancholic" and "unspecified". Associations between inflammatory markers and psychiatric diagnoses were assessed using multiple linear and logistic regression models. Lifetime bipolar disorders and atypical depression were associated with increased levels of hsCRP, but not after multivariate adjustment. After multivariate adjustment, SUD remained associated with increased hsCRP levels in men (β = 0.13 (95% CI: 0.03,0.23)) but not in women. After multivariate adjustment, lifetime combined and unspecified depression were associated with decreased levels of IL-6 (β = -0.27 (-0.51,-0.02); β = -0.19 (-0.34,-0.05), respectively) and TNF-α (β = -0.16 (-0.30,-0.01); β = -0.10 (-0.19,-0.02), respectively), whereas current combined and unspecified depression were associated with decreased levels of hsCRP (β = -0.20 (-0.39,-0.02); β = -0.12 (-0.24,-0.01), respectively). Our data suggest that the significant associations between increased hsCRP levels and mood disorders are mainly attributable to the effects of comorbid disorders, medication as well as behavioral and physical CVRFs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Early production of IL-4 by LACK-reactive Vbeta4-Valpha8 CD4(+) T cells instructs aberrant Th2 cell development and susceptibility to Leishmania major in BALB / c mice. This was demonstrated using Vbeta4(+)-deficient BALB / c mice as a result of chronic infection with MMTV (SIM), a mouse mammary tumor virus expressing a Vbeta4-specific superantigen. The early IL-4 response was absent in these mice which develop a Th1 response to L. major. Here, we studied the functional plasticity of LACK-reactive Vbeta4-Valpha8 CD4(+) T cells using BALB/ c mice inoculated with L. major shortly after infection with MMTV (SIM), i. e. before deletion of Vbeta4(+) cells. These mice fail to produce the early IL-4 response to L. major and instead exhibit an IFN-gamma response that occurs within LACK-reactive Vbeta4-Valpha8 CD4(+) T cells. Neutralization of IFN-gamma restores the production of IL-4 by these cells. These data suggest that the functional properties of LACK-reactive Vbeta4-Valpha8 CD4(+) T cells are not irreversibly fixed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To defend the host from malignancies, the immune system can spontaneously raise CD8(+) T-cell responses against tumor antigens. Investigating the functional state of tumor-reactive cytolytic T cells in cancer patients is a key step for understanding the role of these cells in tumor immunosurveillance and for evaluating the potential of immunotherapeutic approaches of vaccination against cancer. In this study we identified a subset of circulating tumor-reactive CD8(+) T lymphocytes, which specifically secreted IFN-gamma after exposition to autologous tumor cell lines in stage IV metastatic melanoma patients. Additional phenotypic characterization using multicolor flow cytometry revealed that a significant fraction of these cells were CD45RA(+)CCR7(-), a phenotype that has been proposed recently to characterize cytolytic effectors potentially able to home into inflamed tissues. In the case of an HLA-A2-expressing patient, the antigen specificity of this population was identified by using HLA-A2/peptide multimers incorporating a tyrosinase-derived peptide. Consistently with their phenotypic characteristics, A2/tyrosinase peptide multimer(+) CD8(+) T cells, isolated by cell sorting, were directly lytic ex vivo and able to specifically recognize tyrosinase-expressing tumor cells. Overall, these results provide the first evidence that a proportion of melanoma patients have circulating tumor-reactive T cells, which are lytic effectors cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: To determine whether misalignment structures such as duplications, repeats, and palindromes are associated to insertions/deletions (indels) in gp120, indicating that indels are indeed frameshift mutations generated by DNA misalignment mechanism. Methods: Cloning and sequencing of a fragment of HIV-1 gp120 spanning C2-C4 derived from plasma RNA in 12 patients with early chronic disease and naïve to antiretroviral therapy. Results: Indels in V4 involved always insertion and deletion of duplicated nucleotide segments, and AAT repeats, and were associated to the presence of palindromic sequences. No duplications were detected in V3 and C3. Palindromic sequences occurred with similar frequencies in V3, C3 and V4; the frequency of palindromes in individual genes was found to be significantly higher in structural (gp120, p ≤ 3.00E-7) and significantly lower in regulatory (Tat, p ≤ 9.00E-7) genes, as compared to the average frequency calculated over the full genome. Discussion: Indels in V4 are associated to misalignment structures (i.e. duplications repeat and palindromes) indicating DNA misalignment as the mechanism underlying length variation in V4. The finding that indels in V4 are caused by DNA misalignment has some very important implications: 1) indels in V4 are likely to occur in proviral DNA (and not in RNA), after integration of HIV into the host genome; 2) they are likely to occur as progressive modifications of the early founder virus during chronic infection, as more and more cells get infected; 3) frameshift mutations involving any number of base pairs are likely to occur evenly across gp120; however, only those mutants carrying a functional gp120 (indels as multiples of three base pairs) will be able to perpetuate the virus cycle and to keep spreading through the population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some cancer patients mount spontaneous T- and B-cell responses against their tumor cells. Autologous tumor reactive CD8 cytolytic T lymphocyte (CTL) and CD4 T-cell clones as well as antibodies from these patients have been used for the identification of genes encoding the target antigens. This knowledge opened the way for new approaches to the immunotherapy of cancer. In this review, we describe the characterization of the structure-function properties of the melanocyte/melanoma tumor antigen Melan-A/MART-1, the assessment of the T-cell repertoire available against this antigen in healthy individuals, and the analysis of naturally acquired and/or vaccine-induced CTL responses to this antigen in patients with metastatic melanoma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To better understand the relationship between tumor-host interactions and the efficacy of chemotherapy, we have developed an analytical approach to quantify several biological processes observed in gene expression data sets. We tested the approach on tumor biopsies from individuals with estrogen receptor-negative breast cancer treated with chemotherapy. We report that increased stromal gene expression predicts resistance to preoperative chemotherapy with 5-fluorouracil, epirubicin and cyclophosphamide (FEC) in subjects in the EORTC 10994/BIG 00-01 trial. The predictive value of the stromal signature was successfully validated in two independent cohorts of subjects who received chemotherapy but not in an untreated control group, indicating that the signature is predictive rather than prognostic. The genes in the signature are expressed in reactive stroma, according to reanalysis of data from microdissected breast tumor samples. These findings identify a previously undescribed resistance mechanism to FEC treatment and suggest that antistromal agents may offer new ways to overcome resistance to chemotherapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NK cell self-tolerance is maintained by inhibitory receptors specific for MHC class I molecules. Inhibitory NK receptors are also expressed on memory CD8 T cells but their biological relevance on T cells is unclear. In this study, we describe the expression of the Ly49A receptor on a subset of autoreactive T cells which persist in mice double-transgenic for the lymphocytic choriomeningitis virus-derived peptide gp33 and a TCRalphabeta specific for the gp33. No Ly49A-expressing cells are found in TCRalphabeta single-transgenic mice, indicating that the presence of the autoantigen is required for Ly49A induction. Direct evidence for an Ag-specific initiation of Ly49A expression has been obtained in vitro after stimulation of autoreactive TCRalphabeta T cells with the cognate self-Ag. This expression of Ly49A substantially reduces Ag-specific activation of autoreactive T cells. These findings thus suggest that autoantigen-specific induction of inhibitory NK cell receptors on T cells may contribute to peripheral self-tolerance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cancer is the second cause of death after cardio-vascular diseases in economically developed countries. Two of the most commonly used anti-cancer therapies are chemo and radiotherapy. Despite the remarkable advances made in term of delivery and specificity of these two anti-tumor regimens, their toxicity towards healthy tissue remains a limitation. A promising approach to overcome this obstacle would be the utilization of therapeutic peptides that specifically augment the sensitivity of tumoral cells to treatments. Lower therapeutical doses would then be required to kill malignant cells, limiting toxic effects on healthy tissues. It was previously shown in our laboratory that the caspase-3 generated fragment N2 of RasGAP is able to potentiate the genotoxin-induced apoptosis selectively in cancer cells. In this work we show that fragment N2 strictly requires a cytoplasmic localization to deliver its pro-apoptotic effect in genotoxin-treated cancer cells. The tumor sensitizing capacity of fragment N2 was found to reside within the 10 amino acid sequence 317-326. Our laboratory earlier demonstrated that a peptide corresponding to amino acids 317 to 326 of RasGAP fused to the TAT cell permeable moiety, called TAT-RasGAP317.326, is able to sensitize cancer cells, but not normal cells, to genotoxin-induced apoptosis. In the present study we describe the capacity of TAT-RasGAP 317.326 to sensitize tumors to both chemo and radiotherapy in an in vivo mouse model. The molecular mechanism underlying the TAT-RasGAP 317.326-mediated sensitization starts now to be elucidated. We demonstrate that G3BP1, an endoribonuclease binding to amino acids 317-326 of RasGAP, is not involved in the sensitization mechanism. We also provide evidence showing that TAT-RasGAP3 17-326 potentiates the genotoxin-mediated activation of Bax in a tBid-dependent manner. Altogether our results show that TAT-RasGAP 317.326 could be potentially used in cancer therapy as sensitizer, in order to improve the efficacy of chemo and radiotherapy and prolong the life expectancy of cancer patients. Moreover, the understanding of the TAT-RasGAP317.326 mode of action might help to unravel the mechanisms by which cancer cells resist to chemo and radiotherapy and therefore to design more targeted and efficient anti-tumoral strategies.