301 resultados para Kidney Targeting
Resumo:
A route of accumulation and elimination of therapeutic engineered nanoparticles (NPs) may be the kidney. Therefore, the interactions of different solid-core inorganic NPs (titanium-, silica-, and iron oxide-based NPs) were studied in vitro with the MDCK and LLC-PK epithelial cells as representative cells of the renal epithelia. Following cell exposure to the NPs, observations include cytotoxicity for oleic acid-coated iron oxide NPs, the production of reactive oxygen species for titanium dioxide NPs, and cell depletion of thiols for uncoated iron oxide NPs, whereas for silica NPs an apparent rapid and short-lived increase of thiol levels in both cell lines was observed. Following cell exposure to metallic NPs, the expression of the tranferrin receptor/CD71 was decreased in both cells by iron oxide NPs, but only in MDCK cells by titanium dioxide NPs. The tight association, then subsequent release of NPs by MDCK and LLC-PK kidney epithelial cells, showed that following exposure to the NPs, only MDCK cells could release iron oxide NPs, whereas both cells released titanium dioxide NPs. No transfer of any solid-core NPs across the cell layers was observed.
Resumo:
The development of cancer is a major problem in immunosuppressed patients, particularly after solid organ transplantation. We have recently shown that calcineurin inhibitors (CNI) used to treat transplant patients may play a critical role in the rapid progression of renal cancer. To examine the intracellular signaling events for CNI-mediated direct tumorigenic pathway(s), we studied the effect of CNI on the activation of proto-oncogenic Ras in human normal renal epithelial cells (REC) and renal cancer cells (786-0 and Caki-1). We found that CNI treatment significantly increased the level of activated GTP-bound form of Ras in these cells. In addition, CNI induced the association of Ras with one of its effector molecules, Raf, but not with Rho and phosphatidylinositol 3-kinase; CNI treatment also promoted the phosphorylation of the Raf kinase inhibitory protein and the downregulation of carabin, all of which may lead to the activation of the Ras-Raf pathway. Blockade of this pathway through either pharmacologic inhibitors or gene-specific small interfering RNA significantly inhibited CNI-mediated augmented proliferation of renal cancer cells. Finally, it was observed that CNI treatment increased the growth of human renal tumors in vivo, and the Ras-Raf pathway is significantly activated in the tumor tissues of CNI-treated mice. Together, targeting the Ras-Raf pathway may prevent the development/progression of renal cancer in CNI-treated patients.
Resumo:
Background In angioimmunoblastic T-cell lymphoma, symptoms linked to B-lymphocyte activation are common, and variable numbers of CD20(+) large B-blasts, often infected by Epstein-Barr virus, are found in tumor tissues. We postulated that the disruption of putative B-T interactions and/or depletion of the Epstein-Barr virus reservoir by an anti-CD20 monoclonal antibody (rituximab) could improve the clinical outcome produced by conventional chemotherapy. DESIGN AND METHODS: Twenty-five newly diagnosed patients were treated, in a phase II study, with eight cycles of rituximab + chemotherapy (R-CHOP21). Tumor infiltration, B-blasts and Epstein-Barr virus status in tumor tissue and peripheral blood were fully characterized at diagnosis and were correlated with clinical outcome. RESULTS: A complete response rate of 44% (95% CI, 24% to 65%) was observed. With a median follow-up of 24 months, the 2-year progression-free survival rate was 42% (95% CI, 22% to 61%) and overall survival rate was 62% (95% CI, 40% to 78%). The presence of Epstein-Barr virus DNA in peripheral blood mononuclear cells (14/21 patients) correlated with Epstein-Barr virus score in lymph nodes (P<0.004) and the detection of circulating tumor cells (P=0.0019). Despite peripheral Epstein-Barr virus clearance after treatment, the viral load at diagnosis (>100 copy/μg DNA) was associated with shorter progression-free survival (P=0.06). Conclusions We report here the results of the first clinical trial targeting both the neoplastic T cells and the microenvironment-associated CD20(+) B lymphocytes in angioimmunoblastic T-cell lymphoma, showing no clear benefit of adding rituximab to conventional chemotherapy. A strong relationship, not previously described, between circulating Epstein-Barr virus and circulating tumor cells is highlighted.
Resumo:
Background: Recent data have suggested that a population of CD4+ CD25high T cells, phenotypically characterized by the expression of CD45RO and CD127, is significantly expanded in stable liver and kidney transplant recipients and represents alloreactive T cells. Induction therapies may have an impact on this alloreactive T cell population. In this study, we prospectively analyzed CD4+ CD25high CD45RO+ CD127high T cells after induction with either thymoglobulin or basiliximab. Patients and methods: A total of twenty-seven kidney transplant recipients were prospectively enrolled; 14 received thymoglobulin induction followed by a 4-day course of steroids with tacrolimus and mycophenolate mofetil («thymo group»), and 13 received basiliximab induction followed by standard triple immunosuppression (tacrolimus, mycophenolate mofetil and prednisone) («BSX group»). Phenotypical analysis by flow cytometry of the expression of CD25, CD45RO and CD127 on peripheral CD4+ T cells was performed at 0, 3 and 6 months after transplantation. Twenty-four healthy subjects (HS) were studied as controls. Results: There were no differences in baseline characteristics between the groups; at 6 months, patient survival (100%), graft survival (100%), serum creatinine (thymo group versus BSX group: 129 versus 125 micromol/l) and acute rejection (2/14 versus 2/13) were not significantly different. Thymo induction produced a prolonged CD4 T cell depletion. As compared to pre-transplantation values, an expansion of the alloreactive T cell population was observed at 3 months in both thymo (mean: from 6.38% to 14.72%) and BSX (mean: from 8.01% to 18.42%) groups. At 6 months, the alloreactive T cell population remained significantly expanded in the thymo group (16.92 ± 2.87%) whereas it tended to decrease in the BSX group (10.22 ± 1.38%). Conclusion: Overall, our results indicate that the expansion of alloreactive T cells occurs rapidly after transplantation in patients receiving either thymo or BSX induction. Whether differences at later timepoints or whether different IS regimens may modify this alloreactive population remains to be studied.
Resumo:
Aim: Gamma Knife surgery (GKS) is a non-invasive neurosurgical stereotactic procedure, increasingly used as an alternative to open functional procedures. This includes the targeting of the ventro-intermediate (Vim) nucleus of the thalamus for tremor. We currently perform an indirect targeting, using the "quadrilatere of Guyot," as the Vim nucleus is not visible on current 3 Tesla (T) MRI acquisitions. The primary objective of the current study was to enhance anatomic imaging for Vim GKS using high-field (7 T) MRI, with the aim of refining the visualization and precision of anatomical targeting. Method: Five young healthy subjects (mean age 23 years) were scanned both on 3 and 7 T MRI in Lausanne University Hospital (CHUV) and Center for Biomedical Imaging (CIBM). Classical T1-weighted MPRAGE, T2 CISS sequences (replacing former ventriculography) and diffusion tensor imaging were acquired at 3T. We obtained high-resolution susceptibility weighted images (SWI) at 7T for the visualization of thalamic subparts. SWI was further integrated for the first time into Leksell Gamma Plan® (LGP) software and co-registered with the 3T images. A simulation of targeting of the Vim was done using the "quadrilatere of Guyot" methodology on the 3T images. Furthermore, a correlation with the position of the found target on SWI was performed. The atlas of Morel et al. was used to confirm the findings on a detailed computer analysis outside LGP. Also, 3T and 7T MRI of one patient undergoing GKS Vim thalamotomy, were obtained before and 2 years after the procedure, and studied similarly. Results: The use of SWI provided a superior resolution and improved image contrast within the central gray matter. This allowed visualization and direct delineation of groups of thalamic nuclei in vivo, including the Vim. The position of the target, as assessed with the "quadrilatere of Guyot" method on 3 T, perfectly matched with the supposed one of the Vim on the SWI. Furthermore, a 3-dimensional model of the Vim target area was created on the basis of 3T and 7T images. Conclusion: This is the first report of the integration of SWI high-field MRI into the LGP in healthy subjects and in one patient treated GKS Vim thalamotomy. This approach aims at the improvement of targeting validation and further direct targeting of the Vim in tremor. The anatomical correlation between the direct visualization on 7T and the current targeting methods on 3T seems to show a very good anatomical matching.
Resumo:
Bone destruction is a prominent feature of multiple myeloma, but conflicting data exist on the expression and pathophysiologic involvement of the bone remodeling ligand RANKL in this disease and the potential therapeutic benefits of its targeted inhibition. Here, we show that RANKL is expressed by primary multiple myeloma and chronic lymphocytic leukemia (CLL) cells, whereas release of soluble RANKL was observed exclusively with multiple myeloma cells and was strongly influenced by posttranscriptional/posttranslational regulation. Signaling via RANKL into multiple myeloma and CLL cells induced release of cytokines involved in disease pathophysiology. Both the effects of RANKL on osteoclastogenesis and cytokine production by malignant cells could be blocked by disruption of RANK-RANKL interaction with denosumab. As we aimed to combine neutralization of RANKL with induction of antibody-dependent cellular cytotoxicity of natural killer (NK) cells against RANKL-expressing malignant cells and as denosumab does not stimulate NK reactivity, we generated RANK-Fc fusion proteins with modified Fc moieties. The latter displayed similar capacity compared with denosumab to neutralize the effects of RANKL on osteoclastogenesis in vitro, but also potently stimulated NK cell reactivity against primary RANKL-expressing malignant B cells, which was dependent on their engineered affinity to CD16. Our findings introduce Fc-optimized RANK-Ig fusion proteins as attractive tools to neutralize the detrimental function of RANKL while at the same time potently stimulating NK cell antitumor immunity.
Resumo:
Au vu de l'augmentation de la prévalence de l'insuffisance rénale chronique (IRC), une détection précoce a été proposée. Certaines organisations de santé proposent des mesures de détection précoce (par exemple : taux de filtration glomérulaire). L'efficacité du dépistage de l'IRC n'est cependant pas connue puisqu'aucune étude randomisée contrôlée n'a été conduite. Si le test de dépistage de l'IRC est simple et peu onéreux, un dépistage n'est justifié que s'il améliore le pronostic par rapport à l'absence de dépistage avec un rapport risques-bénéfices favorable et un rapport coût-efficacité acceptable. Sur la base d'études observationnelles et de modèles de rapport coût-efficacité, le dépistage de l'IRC doit être proposé chez les patients hypertendus et/ou diabétiques mais pas dans la population générale. [Abstract] Given the increasing prevalence of chronic kidney disease (CKD), early detection has been proposed. Some organizations recommend CKD screening. Yet, the efficacy of CKD screening is unknown given the absence of randomized controlled trial conducted so far. While CKD screening tests (e.g., glomerular filtration rate) are simple and inexpensive, CKD screening can only be justified if it reduces CKD-related mortality and/or CKD-related morbidity compared to no screening. In addition, CKD screening must provide more benefits than risks to the participants and must be cost-effective. Based on observational studies and cost-effectiveness models, CKD screening has to be proposed to high risk population (patients with hypertension and/or diabetes) but not to the general population.
Resumo:
Urinary indices are classically believed to allow differentiation of transient (or pre-renal) acute kidney injury (AKI) from persistent (or acute tubular necrosis) AKI. However, the data validating urinalysis in critically ill patients are weak. In the previous issue of Critical Care, Pons and colleagues demonstrate in a multicenter observational study that sodium and urea excretion fractions as well as urinary over plasma ratios performed poorly as diagnostic tests to separate such entities. This study confirms the limited diagnostic and prognostic ability of urine testing. Together with other studies, this study raises more fundamental questions about the value, meaning and pathophysiologic validity of the pre-renal AKI paradigm and suggests that AKI (like all other forms of organ injury) is a continuum of injury that cannot be neatly divided into functional (pre-renal or transient) or structural (acute tubular necrosis or persistent).
Resumo:
Combined liver-kidney transplantation is considered a low risk for immunologic complication. We report an unusual case of identical ABO liver-kidney recipient without preformed anti-human leukocyte antigen (HLA) antibodies, transplanted across a T- and B-cell-negative cross-match and complicated by early acute humoral and cellular rejection, first in the liver then in the kidney. While analyzing the immunologic complications in our cohort of 12 low-risk combined liver-kidney recipients, only one recipient experienced a rejection episode without detection of anti-HLA antibody over time. Although humoral or cellular rejection is rare after combined kidney-liver transplantation, our data suggest that even in low-risk recipients, the liver does not always systematically protect the kidney from acute rejection. Indeed, the detection of C4d in the liver should be carefully followed after combined liver-kidney transplantation.
Resumo:
Tat activates transcription by interacting with Sp1, NF-kappaB, positive transcription elongation factor b, and trans-activator-responsive element (TAR). Tat and Sp1 play major roles in transcription by protein-protein interactions at human immunodeficiency virus, type 1 (HIV-1) long terminal repeat. Sp1 activates transcription by interacting with cyclin T1 in the absence of Tat. To disrupt the transcription activation by Tat and Sp1, we fused Sp1-inhibiting polypeptides, zinc finger polypeptide, and the TAR-binding mutant Tat (TatdMt) together. A designed or natural zinc finger and Tat mutant fusion was used to target the fusion to the key regulatory sites (GC box and TAR) on the long terminal repeat and nascent short transcripts to disrupt the molecular interaction that normally result in robust transcription. The designed zinc finger and TatdMt fusions were targeted to the TAR, and they potently repressed both transcription and replication of HIV-1. The Sp1-inhibiting POZ domain, TatdMt, and zinc fingers are key functional domains important in repression of transcription and replication. The designed artificial zinc fingers were targeted to the high affinity Sp1-binding site, and by being fused with TatdMt and POZ domain, they strongly block both Sp1-cyclin T1-dependent transcription and Tat-dependent transcription, even in the presence of excess expressed Tat.