212 resultados para Genetic code
Resumo:
Evolutionary processes acting at the expanding margins of a species' range are still poorly understood. Genetic drift is considered prevalent in marginal populations, and the maintenance of genetic diversity during recolonization might seem puzzling. To investigate such processes, a fine-scale investigation of 219 individuals was performed within a population of Biscutella laevigata (Brassicaceae), located at the leading edge of its range. The survey used amplified fragment length polymorphisms (AFLPs). As commonly reported across the whole species distribution range, individual density and genetic diversity decreased along the local axis of recolonization of this expanding population, highlighting the enduring effect of the historical colonization on present-day diversity. The self-incompatibility system of the plant may have prevented local inbreeding in newly found patches and sustained genetic diversity by ensuring gene flow from established populations. Within the more continuously populated region, spatial analysis of genetic structure revealed restricted gene flow among individuals. The distribution of genotypes formed a mosaic of relatively homogenous patches within the continuous population. This pattern could be explained by a history of expansion by long-distance dispersal followed by fine-scale diffusion (that is, a stratified dispersal combination). The secondary contact among expanding patches apparently led to admixture among differentiated genotypes where they met (that is, a reshuffling effect). This type of dynamics could explain the maintenance of genetic diversity during recolonization.
Resumo:
BACKGROUND: Highly recurrent major depressive disorder (MDD) has reportedly increased risk of shifting to bipolar disorder; high recurrence frequency has, therefore, featured as evidence of 'soft bipolarity'. We aimed to investigate the genetic underpinnings of total depressive episode count in recurrent MDD. METHODS: Our primary sample included 1966 MDD cases with negative family history of bipolar disorder from the RADIANT studies. Total episode count was adjusted for gender, age, MDD duration, study and center before being tested for association with genotype in two separate genome-wide analyses (GWAS), in the full set and in a subset of 1364 cases with positive family history of MDD (FH+). We also calculated polygenic scores from the Psychiatric Genomics Consortium MDD and bipolar disorder studies. RESULTS: Episodicity (especially intermediate episode counts) was an independent index of MDD familial aggregation, replicating previous reports. The GWAS produced no genome-wide significant findings. The strongest signals were detected in the full set at MAGI1 (p=5.1×10(-7)), previously associated with bipolar disorder, and in the FH+ subset at STIM1 (p=3.9×10(-6) after imputation), a calcium channel signaling gene. However, these findings failed to replicate in an independent Munich cohort. In the full set polygenic profile analyses, MDD polygenes predicted episodicity better than bipolar polygenes; however, in the FH+ subset, both polygenic scores performed similarly. LIMITATIONS: Episode count was self-reported and, therefore, subject to recall bias. CONCLUSIONS: Our findings lend preliminary support to the hypothesis that highly recurrent MDD with FH+ is part of a 'soft bipolar spectrum' but await replication in larger cohorts.
Resumo:
Principal mechanisms of resistance to azole antifungals include the upregulation of multidrug transporters and the modification of the target enzyme, a cytochrome P450 (Erg11) involved in the 14alpha-demethylation of ergosterol. These mechanisms are often combined in azole-resistant Candida albicans isolates recovered from patients. However, the precise contributions of individual mechanisms to C. albicans resistance to specific azoles have been difficult to establish because of the technical difficulties in the genetic manipulation of this diploid species. Recent advances have made genetic manipulations easier, and we therefore undertook the genetic dissection of resistance mechanisms in an azole-resistant clinical isolate. This isolate (DSY296) upregulates the multidrug transporter genes CDR1 and CDR2 and has acquired a G464S substitution in both ERG11 alleles. In DSY296, inactivation of TAC1, a transcription factor containing a gain-of-function mutation, followed by sequential replacement of ERG11 mutant alleles with wild-type alleles, restored azole susceptibility to the levels measured for a parent azole-susceptible isolate (DSY294). These sequential genetic manipulations not only demonstrated that these two resistance mechanisms were those responsible for the development of resistance in DSY296 but also indicated that the quantitative level of resistance as measured in vitro by MIC determinations was a function of the number of genetic resistance mechanisms operating in any strain. The engineered strains were also tested for their responses to fluconazole treatment in a novel 3-day model of invasive C. albicans infection of mice. Fifty percent effective doses (ED(50)s) of fluconazole were highest for DSY296 and decreased proportionally with the sequential removal of each resistance mechanism. However, while the fold differences in ED(50) were proportional to the fold differences in MICs, their magnitude was lower than that measured in vitro and depended on the specific resistance mechanism operating.
Resumo:
Knowledge of the genetic structure of plant populations is necessary for the understanding of the dynamics of major ecological processes. It also has applications in conservation biology and risk assessment for genetically modified crops. This paper reports the genetic structure of a linear population of sea beet, Beta vulgaris ssp. maritima (the wild relative of sugar beet), on Furzey Island, Poole Harbour. The relative spatial positions of the plants were accurately mapped and the plants were scored for variation at isozyme and RFLP loci. Structure was analysed by repeated subdivision of the population to find the average size of a randomly mating group. Estimates of F-ST between randomly mating units were then made, and gave patterns consistent with the structure of the population being determined largely by founder effects. The implications of these results for the monitoring of transgene spread in wild sea beet populations are discussed.
Resumo:
Recent progress in medicine allow to provide treatment, to cure or to extend the lifespan of people that would have not survived before. Doctors and healthcare providers have become indispensable actors in Western societies. This is particularly true for children's health issues. With the new information technologies, knowledge is now available to everyone, which enables patients to dialog on an equal footing with the physician. Nowadays, therapeutic choices are discussed and negotiated. The new tensions caused by this relationship between therapist and patient have created the need for new regulations. The Swiss Confederation has modified its Civil Code with the objective of a better protection of vulnerable individuals. This article summarizes the consequences of the new regulations with regard to the care and treatment provided to children.
Resumo:
BACKGROUND: Transgressive segregation describes the occurrence of novel phenotypes in hybrids with extreme trait values not observed in either parental species. A previously experimentally untested prediction is that the amount of transgression increases with the genetic distance between hybridizing species. This follows from QTL studies suggesting that transgression is most commonly due to complementary gene action or epistasis, which become more frequent at larger genetic distances. This is because the number of QTLs fixed for alleles with opposing signs in different species should increase with time since speciation provided that speciation is not driven by disruptive selection. We measured the amount of transgression occurring in hybrids of cichlid fish bred from species pairs with gradually increasing genetic distances and varying phenotypic similarity. Transgression in multi-trait shape phenotypes was quantified using landmark-based geometric morphometric methods. RESULTS: We found that genetic distance explained 52% and 78% of the variation in transgression frequency in F1 and F2 hybrids, respectively. Confirming theoretical predictions, transgression when measured in F2 hybrids, increased linearly with genetic distance between hybridizing species. Phenotypic similarity of species on the other hand was not related to the amount of transgression. CONCLUSION: The commonness and ease with which novel phenotypes are produced in cichlid hybrids between unrelated species has important implications for the interaction of hybridization with adaptation and speciation. Hybridization may generate new genotypes with adaptive potential that did not reside as standing genetic variation in either parental population, potentially enhancing a population's responsiveness to selection. Our results make it conceivable that hybridization contributed to the rapid rates of phenotypic evolution in the large and rapid adaptive radiations of haplochromine cichlids.
Resumo:
Abstract: Light is a very important environmental cue for plants. In addition to the energy for photosynthesis, it also provides information that is essential for many processes including seed germination, seedlings development, neighbours detection or transition from the vegetative to the reproductive state. Plants evolved different photoreceptors, among which the phytochromes (PHY), which are red/far-red photoreceptors. This family is composed of 5 members in Arabidopsis thaliana, among which phyB plays the major role for detection of red light. Phytochromes are also able to reset the phase of the circadian clock, which is composed of a complicated network of genes able to produce rhythms of about 24 hours, even in constant conditions. SRR1 (Sensitivity to Red light Reduced) is a gene that was shown to act in the phyB pathway as well as in the circadian clock. It was proposed to play a role in the maintenance of rhythms of the core oscillator because of the circadian phenotype of the srr1 mutant in constant light and in constant darkness. In the present study, we present data confirming the role of SRR1 in the core oscillator. Moreover, we show that SRR1 levels are not limiting for circadian rhythms nor for light perception. We show that the protein levels, the sub-cellular localisation or the complex in which SRR1 is found are not regulated in a circadian manner. Orthologues of SRR1 exist in numerous eukaryotes, forming a new gene family. None of the members of this family have been described. Here, we present data suggesting that the mouse orthologue of SRR1 may not be required for oscillation of the circadian clock of mouse cells in culture. The yeast gene (called BER1 for Benomyl REsistant) was studied to understand the biochemical function of this gene family. Based on synthetic genetic screens, a role of Ber1 was inferred in microtubules dynamics, N-terminal acetylation of protein and proteasome biogenesis. The effect of Ber1 on microtubules was confirmed by the observation that the ber1Δ mutant is more resistant to microtubule-depolymerising drugs and microscopic examination of microtubules in ber 1 Δ mutants. Complementation assays of ber1 Δ mutants and srrl mutants failed to reveal any obvious functional conservation of the mouse, yeast and Arabidopsis orthologues. In conclusion, the SRR1 family might encode genes that either plays different roles in different organisms, or have similar biochemical function but are involved in diverse pathway. Résumé: La lumière est un des facteurs abiotiques les plus important pour les plantes. En plus de l'énergie fournie pour la photosynthèse, elle fourni également de l'information nécessaire pour différents processus comme la germination, le développement des jeunes plantules, la détection de plantes avoisinantes ou encore la transition entre le développement végétatif et reproductif. Plusieurs types de photorécepteurs sont apparus chez les plantes au cours de l'évolution, notamment les phytochromes (PHI, qui perçoivent la lumière rouge et rouge lointaine. Cette famille est composé de 5 membres chez Arabidopsis thaliana, parmi lesquels phyB est le principal récepteur pour la lumière rouge. Les phytochromes sont aussi utiles pour la synchronisation entre les cycles jour-nuit dus à la rotation de la terre et l'horloge circadienne. Cette dernière est composée d'un réseau compliqué qui permet la production de rythmes capables de perdurer même en conditions constantes. SRRI (Sensitivity to Red light Reduced) est un gène qui agit dans la voie de signalisation de phyB ainsi que dans l'horloge circadienne. Il a été proposé que SRRI joue un rôle dans la maintenance des rythmes de l'oscillateur principal à cause des phénotypes circadiens du mutant srrl observés en lumière et en obscurité continue. Dans ce travail, nous présentons des données confirmant le rôle de SRR1 dans l'oscillateur principal. Nous montrons que les niveaux d'expression de SRRI ne sont pas limitants pour les rythmes circadiens ou la perception de la lumière. Enfin, nous montrons que le niveau d'accumulation de la protéine, sa localisation subcellulaire ou encore la taille du complexe dans lequel SRRl est trouvé ne sont pas régulés de façon circadiennes. Des orthologues de SRRI existent chez de nombreux eucaryotes, formant une nouvelle famille de gènes. Aucun des membres de cette famille n'a été étudié avant ce travail. Nous présentons des données suggérant que l'orthologue de la souris n'est peut-être pas requis pour les oscillations de l'horloge circadienne de cellules de souris en culture. Le gène de la levure (appelé SERI pour Benomyl REsistant) a été étudié afin de mieux comprendre la fonction biochimique de cette famille de gène. Une analyse par crible synthétique léthal a révélé un rôle de Ber1 dans la dynamique des microtubules, l'acétylation des protéines en N-terminal et la biogenèse du protéasome. L'effet de Ber1 sur les microtubules a été confirmé par l'observation du mutant ber1 en présence de drogue capable de dépolymériser les microtubules. Celui-ci est plus résistant à ces drogues que le type sauvage. Des expériences de complémentation n'ont pas montré de conservation de la fonction entre SRRI et ses homologues de souris ou de levure. En conclusion, la famille SRRI code pour des gènes qui pourraient avoir soit des rôles différents selon les organismes, soit la même fonction biochimique mais qui serait utile pour des voies de signalisation différentes.
Resumo:
Multiple genome-wide association studies (GWAS) have been performed in HIV-1 infected individuals, identifying common genetic influences on viral control and disease course. Similarly, common genetic correlates of acquisition of HIV-1 after exposure have been interrogated using GWAS, although in generally small samples. Under the auspices of the International Collaboration for the Genomics of HIV, we have combined the genome-wide single nucleotide polymorphism (SNP) data collected by 25 cohorts, studies, or institutions on HIV-1 infected individuals and compared them to carefully matched population-level data sets (a list of all collaborators appears in Note S1 in Text S1). After imputation using the 1,000 Genomes Project reference panel, we tested approximately 8 million common DNA variants (SNPs and indels) for association with HIV-1 acquisition in 6,334 infected patients and 7,247 population samples of European ancestry. Initial association testing identified the SNP rs4418214, the C allele of which is known to tag the HLA-B*57:01 and B*27:05 alleles, as genome-wide significant (p = 3.6×10(-11)). However, restricting analysis to individuals with a known date of seroconversion suggested that this association was due to the frailty bias in studies of lethal diseases. Further analyses including testing recessive genetic models, testing for bulk effects of non-genome-wide significant variants, stratifying by sexual or parenteral transmission risk and testing previously reported associations showed no evidence for genetic influence on HIV-1 acquisition (with the exception of CCR5Δ32 homozygosity). Thus, these data suggest that genetic influences on HIV acquisition are either rare or have smaller effects than can be detected by this sample size.
Resumo:
The species Formica aquilonia and F. lugubris of the mound-building red wood ants have a disjunct boreoalpine distribution in Europe. The populations of F. aquilonia in Finland, Switzerland and the British Isles show little genetic differentiation, whereas the populations of F. lugubris show considerable differentiation. The Central European populations morphologically identified as F. lugubris can be genetically divided into two groups (here called types A and B). Type B is found in the Alps and the Jura mountains, and is genetically inseparable from F. aquilonia. Type A lives sympatrically with type B in the Jura mountains and is also found in the British Isles. Sympatry of the two types in the Jura shows that these are separate species. It remains open whether type B is morphologically atypical F. aquilonia or whether it is a separate species, perhaps with a past history of introgression between F. aquilonia and F. lugubris. The gene frequencies in the Finnish populations of F. lugubris differ from those of both types A and B. Genetic differences within F. lugubris indicate that the populations have evolved separately for a long time. The social structure of F. lugubris colonies also shows geographic variation. The nests in Finland and the British Isles seem to be mainly monogynous and monodomous, whereas the nests in Central Europe are polygynous and form polydomous colonies. F. aquilonia has polygynous and polydomous colonies in all populations studied.
Resumo:
Epidemiological studies have recognized a genetic diathesis for suicidal behavior, which is independent of other psychiatric disorders. Genome-wide association studies (GWAS) on suicide attempt (SA) and ideation have failed to identify specific genetic variants. Here, we conduct further GWAS and for the first time, use polygenic score analysis in cohorts of patients with mood disorders, to test for common genetic variants for mood disorders and suicide phenotypes. Genome-wide studies for SA were conducted in the RADIANT and GSK-Munich recurrent depression samples and London Bipolar Affective Disorder Case-Control Study (BACCs) then meta-analysis was performed. A GWAS on suicidal ideation during antidepressant treatment had previously been conducted in the Genome Based Therapeutic Drugs for Depression (GENDEP) study. We derived polygenic scores from each sample and tested their ability to predict SA in the mood disorder cohorts or ideation status in the GENDEP study. Polygenic scores for major depressive disorder, bipolar disorder and schizophrenia from the Psychiatric Genomics Consortium were used to investigate pleiotropy between psychiatric disorders and suicide phenotypes. No significant evidence for association was detected at any SNP in GWAS or meta-analysis. Polygenic scores for major depressive disorder significantly predicted suicidal ideation in the GENDEP pharmacogenetics study and also predicted SA in a combined validation dataset. Polygenic scores for SA showed no predictive ability for suicidal ideation. Polygenic score analysis suggests pleiotropy between psychiatric disorders and suicidal ideation whereas the tendency to act on such thoughts may have a partially independent genetic diathesis. © 2014 Wiley Periodicals, Inc.
Resumo:
Microsatellites are used to unravel the fine-scale genetic structure of a hybrid zone between chromosome races Valais and Cordon of the common shrew (Sorex araneus) located in the French Alps. A total of 269 individuals collected between 1992 and 1995 was typed for seven microsatellite loci. A modified version of the classical multiple correspondence analysis is carried out. This analysis clearly shows the dichotomy between the two races. Several approaches are used to study genetic structuring. Gene flow is clearly reduced between these chromosome races and is estimated at one migrant every two generations using X-statistics and one migrant per generation using F-statistics. Hierarchical F- and R-statistics are compared and their efficiency to detect inter- and intraracial patterns of divergence is discussed. Within-race genetic structuring is significant, but remains weak. F-ST displays similar values on both sides of the hybrid zone, although no environmental barriers are found on the Cordon side, whereas the Valais side is divided by several mountain rivers. We introduce the exact G-test to microsatellite data which proved to be a powerful test to detect genetic differentiation within as well as among races. The genetic background of karyotypic hybrids was compared with the genetic background of pure parental forms using a CRT-MCA. Our results indicate that, without knowledge of the karyotypes, we would not have been able to distinguish these hybrids from karyotypically pure samples.
Resumo:
Using genome-wide association, we identify common variants at 2p12-p13, 6q26, 17q23 and 19q13 associated with serum creatinine, a marker of kidney function (P = 10(-10) to 10(-15)). Of these, rs10206899 (near NAT8, 2p12-p13) and rs4805834 (near SLC7A9, 19q13) were also associated with chronic kidney disease (P = 5.0 x 10(-5) and P = 3.6 x 10(-4), respectively). Our findings provide insight into metabolic, solute and drug-transport pathways underlying susceptibility to chronic kidney disease.
Resumo:
Hereditary non-structural diseases such as catecholaminergic polymorphic ventricular tachycardia (CPVT), long QT, and the Brugada syndrome as well as structural disease such as hypertrophic cardiomyopathy (HCM) and arrhythmogenic right ventricular cardiomyopathy (ARVC) cause a significant percentage of sudden cardiac deaths in the young. In these cases, genetic testing can be useful and does not require proxy consent if it is carried out at the request of judicial authorities as part of a forensic death investigation. Mutations in several genes are implicated in arrhythmic syndromes, including SCN5A, KCNQ1, KCNH2, RyR2, and genes causing HCM. If the victim's test is positive, this information is important for relatives who might be themselves at risk of carrying the disease-causing mutation. There is no consensus about how professionals should proceed in this context. This article discusses the ethical and legal arguments in favour of and against three options: genetic testing of the deceased victim only; counselling of relatives before testing the victim; counselling restricted to relatives of victims who tested positive for mutations of serious and preventable diseases. Legal cases are mentioned that pertain to the duty of geneticists and other physicians to warn relatives. Although the claim for a legal duty is tenuous, recent publications and guidelines suggest that geneticists and others involved in the multidisciplinary approach of sudden death (SD) cases may, nevertheless, have an ethical duty to inform relatives of SD victims. Several practical problems remain pertaining to the costs of testing, the counselling and to the need to obtain permission of judicial authorities.