334 resultados para BETA-ACIDS
Resumo:
Plasmacytoid dendritic cells (pDCs) are specialized sensors of viral nucleic acids that initiate protective immunity through the production of type I interferons (IFNs). Normally, pDCs fail to sense host-derived self-nucleic acids but do so when self-nucleic acids form complexes with endogenous antimicrobial peptides produced in damaged skin. Whereas regulated expression of antimicrobial peptides may lead to pDC activation and protective immune responses to skin injury, overexpression of antimicrobial peptides in psoriasis drives excessive sensing of self-nucleic acids by pDCs resulting in IFN-driven autoimmunity. In skin tumors, pDCs are unable to sense self-nucleic acids; however, therapeutic activation of pDCs by synthetic nucleic acids or analogues can be exploited to generate antitumor immunity.
Resumo:
Islet-brain 1 (IB1) is the human and rat homologue of JIP-1, a scaffold protein interacting with the c-Jun amino-terminal kinase (JNK). IB1 expression is mostly restricted to the endocrine pancreas and to the central nervous system. Herein, we explored the transcriptional mechanism responsible for this preferential islet and neuronal expression of IB1. A 731-bp fragment of the 5' regulatory region of the human MAPK8IP1 gene was isolated from a human BAC library and cloned upstream of a luciferase reporter gene. This construct drove high transcriptional activity in both insulin-secreting and neuron-like cells but not in unrelated cell lines. Sequence analysis of this promoter region revealed the presence of a neuron-restrictive silencer element (NRSE) known to bind repressor zinc finger protein REST. This factor is not expressed in insulin-secreting and neuron-like cells. By mobility shift assay, we confirmed that REST binds to the NRSE present in the IB1 promoter. Once transiently transfected in beta-cell lines, the expression vector encoding REST repressed IB1 transcriptional activity. The introduction of a mutated NRSE in the 5' regulating region of the IB1 gene abolished the repression activity driven by REST in insulin-secreting beta cells and relieved the low transcriptional activity of IB1 observed in unrelated cells. Moreover, transfection in non-beta and nonneuronal cell lines of an expression vector encoding REST lacking its transcriptional repression domain relieved IB1 promoter activity. Last, the REST-mediated repression of IB1 could be abolished by trichostatin A, indicating that deacetylase activity is required to allow REST repression. Taken together, these data establish a critical role for REST in the control of the tissue-specific expression of the human IB1 gene.
Resumo:
We have currently studied the changes induced by administration of a fructose-rich diet (FRD) to normal rats in the mass and the endocrine function of abdominal (omental) adipose tissue (AAT). Rats were fed ad libitum a standard commercial chow and tap water, either alone (control diet, CD) or containing fructose (10%, w/vol) (FRD). Three weeks after treatment, circulating metabolic markers and leptin release from adipocytes of AAT were measured. Plasma free fatty acids (FFAs), leptin, adiponectin, and plasminogen activator inhibitor-1 (PAI-1) levels were significantly higher in FRD than in CD rats. AAT mass was greater in FRD than in CD rats and their adipocytes were larger, they secreted more leptin and showed impaired insulin sensitivity. While leptin mRNA expression increased in AAT from FRD rats, gene expression of insulin receptor substrate, IRS1 and IRS2 was significantly reduced. Our study demonstrates that administration of a FRD significantly affects insulin sensitivity and several AAT endocrine/metabolic functions. These alterations could be part of a network of interacting abnormalities triggered by FRD-induced oxidative stress at the AAT level. In view of the impaired glucose tolerance observed in FRD rats, these alterations could play a key role in both the development of metabolic syndrome (MS) and beta-cell failure.
Resumo:
Macrophages, which belong to the immune system, are increasingly being recognized for their contribution to metabolic regulation. In two studies by Kang et al. (2008) and Odegaard et al. (2008) in this issue of Cell Metabolism, we learn that alternative activation (M2a) of resident macrophages in liver and adipose tissue depends highly on PPARdelta/beta activity, leading to improved fatty acid metabolism and insulin sensitivity.
Resumo:
Peripheral blood mononuclear cells from subjects never exposed to Leishmania were stimulated with Leishmania guyanensis. We demonstrated that L. guyanensis-stimulated CD8(+) T cells produced interferon (IFN)- gamma and preferentially expressed the V beta 14 T cell receptor (TCR) gene family. In addition, these cells expressed cutaneous lymphocyte antigen and CCR4 surface molecules, suggesting that they could migrate to the skin. Results obtained from the lesions of patients with localized cutaneous leishmaniaisis (LCL) showed that V beta 14 TCR expression was increased in most lesions (63.5%) and that expression of only a small number of V beta gene families (V beta 1, V beta 6, V beta 9, V beta 14, and V beta 24) was increased. The presence of V beta 14 T cells in tissue confirmed the migration of these cells to the lesion site. Thus, we propose the following sequence of events during infection with L. guyanensis. After initial exposure to L. guyanensis, CD8(+) T cells preferentially expressing the V beta 14 TCR and secreting IFN- gamma develop and circulate in the periphery. During the infection, these cells migrate to the skin at the site of the parasitic infection. The role of these V beta 14 CD8(+) T cells in resistance to infection remains to be determined conclusively.
Resumo:
BACKGROUND: A high dietary protein intake has been shown to blunt the deposition of intrahepatic lipids in high-fat- and high-carbohydrate-fed rodents and humans. OBJECTIVE: The aim of this study was to evaluate the effect of essential amino acid supplementation on the increase in hepatic fat content induced by a high-fructose diet in healthy subjects. DESIGN: Nine healthy male volunteers were studied on 3 occasions in a randomized, crossover design after 6 d of dietary intervention. Dietary conditions consisted of a weight-maintenance balanced diet (control) or the same balanced diet supplemented with 3 g fructose · kg(-1) · d(-1) and 6.77 g of a mixture of 5 essential amino acids 3 times/d (leucine, isoleucine, valine, lysine, and threonine) (HFrAA) or with 3 g fructose · kg(-1) · d(-1) and a maltodextrin placebo 3 times/d (HFr); there was a washout period of 4 to 10 wk between each condition. For each condition, the intrahepatocellular lipid (IHCL) concentration, VLDL-triglyceride concentration, and VLDL-[(13)C]palmitate production were measured after oral loading with [(13)C]fructose. RESULTS: HFr increased the IHCL content (1.27 ± 0.31 compared with 2.74 ± 0.55 vol %; P < 0.05) and VLDL-triglyceride (0.55 ± 0.06 compared with 1.40 ± 0.15 mmol/L; P < 0.05). HFr also enhanced VLDL-[(13)C]palmitate production. HFrAA significantly decreased IHCL compared with HFr (to 2.30 ± 0.43 vol%; P < 0.05) but did not change VLDL-triglyceride concentrations or VLDL-[(13)C]palmitate production. CONCLUSIONS: Supplementation with essential amino acids blunts the fructose-induced increase in IHCL but not hypertriglyceridemia. This is not because of inhibition of VLDL-[(13)C]palmitate production. This trial was registered at www.clinicaltrials.gov as NCT01119989.
Resumo:
Basic calcium phosphate (BCP) crystals are associated with severe osteoarthritis and acute periarticular inflammation. Three main forms of BCP crystals have been identified from pathological tissues: octacalcium phosphate, carbonate-substituted apatite, and hydroxyapatite. We investigated the proinflammatory effects of these BCP crystals in vitro with special regard to the involvement of the NLRP3-inflammasome in THP-1 cells, primary human monocytes and macrophages, and mouse bone marrow-derived macrophages (BMDM). THP-1 cells stimulated with BCP crystals produced IL-1β in a dose-dependent manner. Similarly, primary human cells and BMDM from wild-type mice also produced high concentrations of IL-1β after crystal stimulation. THP-1 cells transfected with short hairpin RNA against the components of the NLRP3 inflammasome and mouse BMDM from mice deficient for NLRP3, apoptosis-associated speck-like protein, or caspase-1 did not produce IL-1β after BCP crystal stimulation. BCP crystals induced macrophage apoptosis/necrosis as demonstrated by MTT and flow cytometric analysis. Collectively, these results demonstrate that BCP crystals induce IL-1β secretion through activating the NLRP3 inflammasome. Furthermore, we speculate that IL-1 blockade could be a novel strategy to inhibit BCP-induced inflammation in human disease.
Resumo:
Gene duplication and neofunctionalization are known to be important processes in the evolution of phenotypic complexity. They account for important evolutionary novelties that confer ecological adaptation, such as the major histocompatibility complex (MHC), a multigene family crucial to the vertebrate immune system. In birds, two MHC class II β (MHCIIβ) exon 3 lineages have been recently characterized, and two hypotheses for the evolutionary history of MHCIIβ lineages were proposed. These lineages could have arisen either by 1) an ancient duplication and subsequent divergence of one paralog or by 2) recent parallel duplications followed by functional convergence. Here, we compiled a data set consisting of 63 MHCIIβ exon 3 sequences from six avian orders to distinguish between these hypotheses and to understand the role of selection in the divergent evolution of the two avian MHCIIβ lineages. Based on phylogenetic reconstructions and simulations, we show that a unique duplication event preceding the major avian radiations gave rise to two ancestral MHCIIβ lineages that were each likely lost once later during avian evolution. Maximum likelihood estimation shows that following the ancestral duplication, positive selection drove a radical shift from basic to acidic amino acid composition of a protein domain facing the α-chain in the MHCII α β-heterodimer. Structural analyses of the MHCII α β-heterodimer highlight that three of these residues are potentially involved in direct interactions with the α-chain, suggesting that the shift following duplication may have been accompanied by coevolution of the interacting α- and β-chains. These results provide new insights into the long-term evolutionary relationships among avian MHC genes and open interesting perspectives for comparative and population genomic studies of avian MHC evolution.
Resumo:
AIMS/HYPOTHESIS: Pancreatic beta cells play a central role in the control of glucose homeostasis by secreting insulin to stimulate glucose uptake by peripheral tissues. Understanding the molecular mechanisms that control beta cell function and plasticity has critical implications for the pathophysiology and therapy of major forms of diabetes. Selective gene inactivation in pancreatic beta cells, using the Cre-lox system, is a powerful approach to assess the role of particular genes in beta cells and their impact on whole body glucose homeostasis. Several Cre recombinase (Cre) deleter mice have been established to allow inactivation of genes in beta cells, but many show non-specific recombination in other cell types, often in the brain. METHODS: We describe the generation of Ins1 (Cre) and Ins1 (CreERT2) mice in which the Cre or Cre-oestrogen receptor fusion protein (CreERT2) recombinases have been introduced at the initiation codon of the Ins1 gene. RESULTS: We show that Ins1 (Cre) mice induce efficient and selective recombination of floxed genes in beta cells from the time of birth, with no recombination in the central nervous system. These mice have normal body weight and glucose homeostasis. Furthermore, we show that tamoxifen treatment of adult Ins1 (CreERT2) mice crossed with Rosa26-tdTomato mice induces efficient recombination in beta cells. CONCLUSIONS/INTERPRETATION: These two strains of deleter mice are useful new resources to investigate the molecular physiology of pancreatic beta cells.
Resumo:
JIP-1 is a cytoplasmic inhibitor of the c-Jun amino-terminal kinase activated pathway recently cloned from a mouse brain cDNA library. We report herein the expression cloning of a rat cDNA encoding a JIP-1-related nuclear protein from a pancreatic beta-cell cDNA library that we named IB1 for Islet-Brain 1. IB1 was isolated by its ability to bind to GTII, a cis-regulatory element of the GLUT2 promoter. The IB1 cDNA encodes a 714-amino acid protein, which differs from JIP-1 by the insertion of 47 amino acids in the carboxyl-terminal part of the protein. The remaining 667 amino acids are 97% identical to JIP-1. The 47-amino acid insertion contains a truncated phosphotyrosine interaction domain and a putative helix-loop-helix motif. Recombinant IB1 (amino acids 1-714 and 280-714) was shown to bind in vitro to GTII. Functionally IB1 transactivated the GLUT2 gene. IB1 was localized within the cytoplasm and the nucleus of insulin-secreting cells or COS-7 cells transfected with an expression vector encoding IB1. Using a heterologous GAL4 system, we localized an activation domain of IB1 within the first 280 amino acids of the protein. These data demonstrate that IB1 is a DNA-binding protein related to JIP-1, which is highly expressed in pancreatic beta-cells where it functions as a transactivator of the GLUT2 gene.
Resumo:
Beta-catenin-mediated Wnt signaling has been suggested to be critically involved in hematopoietic stem cell maintenance and development of T and B cells in the immune system. Unexpectedly, here we report that inducible Cre-loxP-mediated inactivation of the beta-catenin gene in bone marrow progenitors does not impair their ability to self-renew and reconstitute all hematopoietic lineages (myeloid, erythroid, and lymphoid), even in competitive mixed chimeras. In addition, both thymocyte survival and antigen-induced proliferation of peripheral T cells is beta-catenin independent. In contrast to earlier reports, these data exclude an essential role for beta-catenin during hematopoiesis and lymphopoiesis.
Resumo:
A recombinant baculovirus expressing the murine class I MHC heavy chain H-2Kd cDNA under the transcriptional control of Autografa californica nuclear polyhedrosis virus (AcNPV) polyhedrin promoter has been isolated and used to infect Sf9 lepidopteran cells either alone or in association with a previously isolated virus expressing mouse beta 2-microglobulina (beta 2-ma). When infected with the heavy chain-encoding virus alone, H-2Kd was produced in a beta 2-m-free conformation detected on the surface of infected cells by conformation-independent antibodies. When Sf9 cells were co-infected with both viruses, approximately 10% of the heavy chain pool was engaged in the formation of native heterodimeric MHC class I molecules, which were glycosylated and transported to the cell surface as demonstrated by radio-binding experiments and flow cytometry. The assembly of the recombinant class I molecule was dependent on peptide, since heterodimer formation was brought about by H-2Kd-specific peptide ligands both in vivo, upon incubation with dually infected cells, and in vitro, in cell-free detergent extracts. In addition, a change in heavy chain conformation was brought about upon incubation with high concentrations (100 microM) of an H-2Kd-restricted octapeptide epitope from Plasmodium berghei. Furthermore, using low concentrations (3 nM) of a photoaffinity label derivative of this peptide, we show direct binding to cells co-expressing class I heavy chain and mouse beta 2-m but not to cells expressing free heavy chain only.
Resumo:
Transforming growth factor-beta (TGF-beta) and its related proteins regulate broad aspects of body development, including cell proliferation, differentiation, apoptosis and gene expression, in various organisms. Deregulated TGF-beta function has been causally implicated in the generation of human fibrotic disorders and in tumor progression. Nevertheless, the molecular mechanisms of TGF-beta action remained essentially unknown until recently. Here, we discuss recent progress in our understanding of the mechanism of TGF-beta signal transduction with respect to the regulation of gene expression, the control of cell phenotype and the potential usage of TGF-beta for the treatment of human diseases.
Resumo:
Hematopietic stem cells (HSCs) maintain life-long hematopoiesis in the bone marrow via their ability to self-renew and to differentiate into all blood lineages. Although a central role for the canonical wnt signaling pathway has been suggested in HSC self-renewal as well as in the development of B and T cells, conditional deletion of beta-catenin (which is considered to be essential for Wnt signaling) has no effect on hematopoiesis or lymphopoiesis. Here, we address whether this discrepancy can be explained by a redundant and compensatory function of gamma-catenin, a close homolog of beta-catenin. Unexpectedly, we find that combined deficiency of beta- and gamma-catenin in hematopoietic progenitors does not impair their ability to self-renew and to reconstitute all myeloid, erythroid, and lymphoid lineages, even in competitive mixed chimeras and serial transplantations. These results exclude an essential role for canonical Wnt signaling (as mediated by beta- and/or gamma-catenin) during hematopoiesis and lymphopoiesis.
Resumo:
Physical damage and disease are known to lead to changes in the oxylipin signature of plants. We searched for oxylipins produced in response to both wounding and pathogenesis in Arabidopsis leaves. Linoleic acid 9- and 13-ketodienes (KODEs) were found to accumulate in wounded leaves as well as in leaves infected with the pathogen Pseudomonas syringae pv. tomato (Pst). Quantification of the compounds showed that they accumulated to higher levels during the hypersensitive response to Pst avrRpm1 than during infection with a Pst strain lacking an avirulence gene. KODEs are Michael addition acceptors, containing a chemically reactive alpha,beta-unsaturated carbonyl group. When infiltrated into leaves, KODEs were found to induce expression of the GST1 gene, but vital staining indicated that these compounds also damaged plant cells. Several molecules typical of lipid oxidation, including malonaldehyde, also contain the alpha,beta-unsaturated carbonyl reactivity feature, and, when delivered in a volatile form, powerfully induced the expression of GST1. The results draw attention to the potential physiological importance of naturally occurring Michael addition acceptors in plants. In particular, these compounds could act directly, or indirectly via cell damage, as powerful gene activators and might also contribute to host cell death.