165 resultados para Avondt, Pierre van den (1619-16..) -- Portraits
Resumo:
AIM: To provide insight into cancer registration coverage, data access and use in Europe. This contributes to data and infrastructure harmonisation and will foster a more prominent role of cancer registries (CRs) within public health, clinical policy and cancer research, whether within or outside the European Research Area. METHODS: During 2010-12 an extensive survey of cancer registration practices and data use was conducted among 161 population-based CRs across Europe. Responding registries (66%) operated in 33 countries, including 23 with national coverage. RESULTS: Population-based oncological surveillance started during the 1940-50s in the northwest of Europe and from the 1970s to 1990s in other regions. The European Union (EU) protection regulations affected data access, especially in Germany and France, but less in the Netherlands or Belgium. Regular reports were produced by CRs on incidence rates (95%), survival (60%) and stage for selected tumours (80%). Evaluation of cancer control and quality of care remained modest except in a few dedicated CRs. Variables evaluated were support of clinical audits, monitoring adherence to clinical guidelines, improvement of cancer care and evaluation of mass cancer screening. Evaluation of diagnostic imaging tools was only occasional. CONCLUSION: Most population-based CRs are well equipped for strengthening cancer surveillance across Europe. Data quality and intensity of use depend on the role the cancer registry plays in the politico, oncomedical and public health setting within the country. Standard registration methodology could therefore not be translated to equivalent advances in cancer prevention and mass screening, quality of care, translational research of prognosis and survivorship across Europe. Further European collaboration remains essential to ensure access to data and comparability of the results.
Resumo:
BACKGROUND: Artemether-lumefantrine is the most widely used artemisinin-based combination therapy for malaria, although treatment failures occur in some regions. We investigated the effect of dosing strategy on efficacy in a pooled analysis from trials done in a wide range of malaria-endemic settings. METHODS: We searched PubMed for clinical trials that enrolled and treated patients with artemether-lumefantrine and were published from 1960 to December, 2012. We merged individual patient data from these trials by use of standardised methods. The primary endpoint was the PCR-adjusted risk of Plasmodium falciparum recrudescence by day 28. Secondary endpoints consisted of the PCR-adjusted risk of P falciparum recurrence by day 42, PCR-unadjusted risk of P falciparum recurrence by day 42, early parasite clearance, and gametocyte carriage. Risk factors for PCR-adjusted recrudescence were identified using Cox's regression model with frailty shared across the study sites. FINDINGS: We included 61 studies done between January, 1998, and December, 2012, and included 14 327 patients in our analyses. The PCR-adjusted therapeutic efficacy was 97·6% (95% CI 97·4-97·9) at day 28 and 96·0% (95·6-96·5) at day 42. After controlling for age and parasitaemia, patients prescribed a higher dose of artemether had a lower risk of having parasitaemia on day 1 (adjusted odds ratio [OR] 0·92, 95% CI 0·86-0·99 for every 1 mg/kg increase in daily artemether dose; p=0·024), but not on day 2 (p=0·69) or day 3 (0·087). In Asia, children weighing 10-15 kg who received a total lumefantrine dose less than 60 mg/kg had the lowest PCR-adjusted efficacy (91·7%, 95% CI 86·5-96·9). In Africa, the risk of treatment failure was greatest in malnourished children aged 1-3 years (PCR-adjusted efficacy 94·3%, 95% CI 92·3-96·3). A higher artemether dose was associated with a lower gametocyte presence within 14 days of treatment (adjusted OR 0·92, 95% CI 0·85-0·99; p=0·037 for every 1 mg/kg increase in total artemether dose). INTERPRETATION: The recommended dose of artemether-lumefantrine provides reliable efficacy in most patients with uncomplicated malaria. However, therapeutic efficacy was lowest in young children from Asia and young underweight children from Africa; a higher dose regimen should be assessed in these groups. FUNDING: Bill & Melinda Gates Foundation.
Resumo:
The worldwide antibiotic crisis has led to a renewed interest in phage therapy. Since time immemorial phages control bacterial populations on Earth. Potent lytic phages against bacterial pathogens can be isolated from the environment or selected from a collection in a matter of days. In addition, phages have the capacity to rapidly overcome bacterial resistances, which will inevitably emerge. To maximally exploit these advantage phages have over conventional drugs such as antibiotics, it is important that sustainable phage products are not submitted to the conventional long medicinal product development and licensing pathway. There is a need for an adapted framework, including realistic production and quality and safety requirements, that allowsa timely supplying of phage therapy products for 'personalized therapy' or for public health or medical emergencies. This paper enumerates all phage therapy product related quality and safety risks known to the authors, as well as the tests that can be performed to minimize these risks, only to the extent needed to protect the patients and to allow and advance responsible phage therapy and research.
Resumo:
Drug combinations can improve angiostatic cancer treatment efficacy and enable the reduction of side effects and drug resistance. Combining drugs is non-trivial due to the high number of possibilities. We applied a feedback system control (FSC) technique with a population-based stochastic search algorithm to navigate through the large parametric space of nine angiostatic drugs at four concentrations to identify optimal low-dose drug combinations. This implied an iterative approach of in vitro testing of endothelial cell viability and algorithm-based analysis. The optimal synergistic drug combination, containing erlotinib, BEZ-235 and RAPTA-C, was reached in a small number of iterations. Final drug combinations showed enhanced endothelial cell specificity and synergistically inhibited proliferation (p < 0.001), but not migration of endothelial cells, and forced enhanced numbers of endothelial cells to undergo apoptosis (p < 0.01). Successful translation of this drug combination was achieved in two preclinical in vivo tumor models. Tumor growth was inhibited synergistically and significantly (p < 0.05 and p < 0.01, respectively) using reduced drug doses as compared to optimal single-drug concentrations. At the applied conditions, single-drug monotherapies had no or negligible activity in these models. We suggest that FSC can be used for rapid identification of effective, reduced dose, multi-drug combinations for the treatment of cancer and other diseases.
Resumo:
In the present review, we discuss how the evolution of oxytocin and vasopressin from a single ancestor peptide after gene duplication has stimulated the development of the vertebrate social brain. Separate production sites became possible with a hypothalamic development, which, interestingly, is triggered by the same transcription factors that underlie the development of various subcortical regions where vasopressin and oxytocin receptors are adjacently expressed and which are connected by inhibitory circuits. The opposite modulation of their output by vasopressin and oxytocin could thus create a dynamic equilibrium for rapid responsiveness to external stimuli. At the level of the individual, nurturing early in life can long-lastingly program oxytocin signaling, maintaining a capability of learning and sensitivity to external stimuli that contributes to development of social behavior in adulthood. Oxytocin and vasopressin are thus important for the development of a vertebrate brain that supports bonding between individuals and building of an interactive community.
Resumo:
Experimental and clinical studies suggest that primate species exhibit greater recovery after lateralized compared to symmetrical spinal cord injuries. Although this observation has major implications for designing clinical trials and translational therapies, advantages in recovery of nonhuman primates over other species have not been shown statistically to date, nor have the associated repair mechanisms been identified. We monitored recovery in more than 400 quadriplegic patients and found that functional gains increased with the laterality of spinal cord damage. Electrophysiological analyses suggested that corticospinal tract reorganization contributes to the greater recovery after lateralized compared with symmetrical injuries. To investigate underlying mechanisms, we modeled lateralized injuries in rats and monkeys using a lateral hemisection, and compared anatomical and functional outcomes with patients who suffered similar lesions. Standardized assessments revealed that monkeys and humans showed greater recovery of locomotion and hand function than did rats. Recovery correlated with the formation of corticospinal detour circuits below the injury, which were extensive in monkeys but nearly absent in rats. Our results uncover pronounced interspecies differences in the nature and extent of spinal cord repair mechanisms, likely resulting from fundamental differences in the anatomical and functional characteristics of the motor systems in primates versus rodents. Although rodents remain essential for advancing regenerative therapies, the unique response of the primate corticospinal tract after injury reemphasizes the importance of primate models for designing clinically relevant treatments.
Resumo:
The human connectome represents a network map of the brain's wiring diagram and the pattern into which its connections are organized is thought to play an important role in cognitive function. The generative rules that shape the topology of the human connectome remain incompletely understood. Earlier work in model organisms has suggested that wiring rules based on geometric relationships (distance) can account for many but likely not all topological features. Here we systematically explore a family of generative models of the human connectome that yield synthetic networks designed according to different wiring rules combining geometric and a broad range of topological factors. We find that a combination of geometric constraints with a homophilic attachment mechanism can create synthetic networks that closely match many topological characteristics of individual human connectomes, including features that were not included in the optimization of the generative model itself. We use these models to investigate a lifespan dataset and show that, with age, the model parameters undergo progressive changes, suggesting a rebalancing of the generative factors underlying the connectome across the lifespan.
Resumo:
Directional cell growth requires that cells read and interpret shallow chemical gradients, but how the gradient directional information is identified remains elusive. We use single-cell analysis and mathematical modeling to define the cellular gradient decoding network in yeast. Our results demonstrate that the spatial information of the gradient signal is read locally within the polarity site complex using double-positive feedback between the GTPase Cdc42 and trafficking of the receptor Ste2. Spatial decoding critically depends on low Cdc42 activity, which is maintained by the MAPK Fus3 through sequestration of the Cdc42 activator Cdc24. Deregulated Cdc42 or Ste2 trafficking prevents gradient decoding and leads to mis-oriented growth. Our work discovers how a conserved set of components assembles a network integrating signal intensity and directionality to decode the spatial information contained in chemical gradients.
Resumo:
BACKGROUND: In the context of the European Surveillance of Congenital Anomalies (EUROCAT) surveillance response to the 2009 influenza pandemic, we sought to establish whether there was a detectable increase of congenital anomaly prevalence among pregnancies exposed to influenza seasons in general, and whether any increase was greater during the 2009 pandemic than during other seasons. METHODS: We performed an ecologic time series analysis based on 26,967 pregnancies with nonchromosomal congenital anomaly conceived from January 2007 to March 2011, reported by 15 EUROCAT registries. Analysis was performed for EUROCAT-defined anomaly subgroups, divided by whether there was a prior hypothesis of association with influenza. Influenza season exposure was based on World Health Organization data. Prevalence rate ratios were calculated comparing pregnancies exposed to influenza season during the congenital anomaly-specific critical period for embryo-fetal development to nonexposed pregnancies. RESULTS: There was no evidence for an increased overall prevalence of congenital anomalies among pregnancies exposed to influenza season. We detected an increased prevalence of ventricular septal defect and tricuspid atresia and stenosis during pandemic influenza season 2009, but not during 2007-2011 influenza seasons. For congenital anomalies, where there was no prior hypothesis, the prevalence of tetralogy of Fallot was strongly reduced during influenza seasons. CONCLUSIONS: Our data do not suggest an overall association of pandemic or seasonal influenza with congenital anomaly prevalence. One interpretation is that apparent influenza effects found in previous individual-based studies were confounded by or interacting with other risk factors. The associations of heart anomalies with pandemic influenza could be strain specific.
Resumo:
The results of recent large-scale clinical trials have led us to review our understanding of the metabolic response to stress and the most appropriate means of managing nutrition in critically ill patients. This review presents an update in this field, identifying and discussing a number of areas for which consensus has been reached and others where controversy remains and presenting areas for future research. We discuss optimal calorie and protein intake, the incidence and management of re-feeding syndrome, the role of gastric residual volume monitoring, the place of supplemental parenteral nutrition when enteral feeding is deemed insufficient, the role of indirect calorimetry, and potential indications for several pharmaconutrients.
Resumo:
UNLABELLED: Cleavage of influenza virus hemagglutinin (HA) by host cell proteases is necessary for viral activation and infectivity. In humans and mice, members of the type II transmembrane protease family (TTSP), e.g., TMPRSS2, TMPRSS4, and TMPRSS11d (HAT), have been shown to cleave influenza virus HA for viral activation and infectivityin vitro Recently, we reported that inactivation of a single HA-activating protease gene,Tmprss2, in knockout mice inhibits the spread of H1N1 influenza viruses. However, after infection ofTmprss2knockout mice with an H3N2 influenza virus, only a slight increase in survival was observed, and mice still lost body weight. In this study, we investigated an additional trypsin-like protease, TMPRSS4. Both TMPRSS2 and TMPRSS4 are expressed in the same cell types of the mouse lung. Deletion ofTmprss4alone in knockout mice does not protect them from body weight loss and death upon infection with H3N2 influenza virus. In contrast,Tmprss2(-/-)Tmprss4(-/-)double-knockout mice showed a remarkably reduced virus spread and lung pathology, in addition to reduced body weight loss and mortality. Thus, our results identified TMPRSS4 as a second host cell protease that, in addition to TMPRSS2, is able to activate the HA of H3N2 influenza virusin vivo IMPORTANCE: Influenza epidemics and recurring pandemics are responsible for significant global morbidity and mortality. Due to high variability of the virus genome, resistance to available antiviral drugs is frequently observed, and new targets for treatment of influenza are needed. Host cell factors essential for processing of the virus hemagglutinin represent very suitable drug targets because the virus is dependent on these host factors for replication. We reported previously thatTmprss2-deficient mice are protected against H1N1 virus infections, but only marginal protection against H3N2 virus infections was observed. Here we show that deletion of two host protease genes,Tmprss2andTmprss4, strongly reduced viral spread as well as lung pathology and resulted in increased survival after H3N2 virus infection. Thus, TMPRSS4 represents another host cell factor that is involved in cleavage activation of H3N2 influenza virusesin vivo.