259 resultados para Analytical validation
Resumo:
Introduction Functional subjective evaluation through questionnaire is fundamental, but not often realized in patients with back complaints, lacking validated tools. The Spinal Function Sort (SFS) was only validated in English. We aimed to translate, adapt and validate the French (SFS-F) and German (SFS-G) versions of the SFS. Methods Three hundred and forty-four patients, experiencing various back complaints, were recruited in a French (n = 87) and a German-speaking (n = 257) center. Construct validity was estimated via correlations with SF-36 physical and mental scales, pain intensity and hospital anxiety and depression scales (HADS). Scale homogeneities were assessed by Cronbach's α. Test-retest reliability was assessed on 65 additional patients using intraclass correlation (IC). Results For the French and German translations, respectively, α were 0.98 and 0.98; IC 0.98 (95% CI: [0.97; 1.00]) and 0.94 (0.90; 0.98). Correlations with physical functioning were 0.63 (0.48; 0.74) and 0.67 (0.59; 0.73); with physical summary 0.60 (0.44; 0.72) and 0.52 (0.43; 0.61); with pain -0.33 (-0.51; -0.13) and -0.51 (-0.60; -0.42); with mental health -0.08 (-0.29; 0.14) and 0.25 (0.13; 0.36); with mental summary 0.01 (-0.21; 0.23) and 0.28 (0.16; 0.39); with depression -0.26 (-0.45; -0.05) and -0.42 (-0.52; -0.32); with anxiety -0.17 (-0.37; -0.04) and -0.45 (-0.54; -0.35). Conclusions Reliability was excellent for both languages. Convergent validity was good with SF-36 physical scales, moderate with VAS pain. Divergent validity was low with SF-36 mental scales in both translated versions and with HADS for the SFS-F (moderate in SFS-G). Both versions seem to be valid and reliable for evaluating perceived functional capacity in patients with back complaints.
Resumo:
A simple and sensitive LC-MS method was developed and validated for the simultaneous quantification of aripiprazole (ARI), atomoxetine (ATO), duloxetine (DUL), clozapine (CLO), olanzapine (OLA), sertindole (STN), venlafaxine (VEN) and their active metabolites dehydroaripiprazole (DARI), norclozapine (NCLO), dehydrosertindole (DSTN) and O-desmethylvenlafaxine (OVEN) in human plasma. The above mentioned compounds and the internal standard (remoxipride) were extracted from 0.5 mL plasma by solid-phase extraction (mix mode support). The analytical separation was carried out on a reverse phase liquid chromatography at basic pH (pH 8.1) in gradient mode. All analytes were monitored by MS detection in the single ion monitoring mode and the method was validated covering the corresponding therapeutic range: 2-200 ng/mL for DUL, OLA, and STN, 4-200 ng/mL for DSTN, 5-1000 ng/mL for ARI, DARI and finally 2-1000 ng/mL for ATO, CLO, NCLO, VEN, OVEN. For all investigated compounds, good performance in terms of recoveries, selectivity, stability, repeatability, intermediate precision, trueness and accuracy, was obtained. Real patient plasma samples were then successfully analysed.
Resumo:
Millions of blood products are transfused every year; many lives are thus directly concerned by transfusion. The three main labile blood products used in transfusion are erythrocyte concentrates, platelet concentrates and fresh frozen plasma. Each of these products has to be stored according to its particular components. However, during storage, modifications or degradation of those components may occur, and are known as storage lesions. Thus, biomarker discovery of in vivo blood aging as well as in vitro labile blood products storage lesions is of high interest for the transfusion medicine community. Pre-analytical issues are of major importance in analyzing the various blood products during storage conditions as well as according to various protocols that are currently used in blood banks for their preparations. This paper will review key elements that have to be taken into account in the context of proteomic-based biomarker discovery applied to blood banking.
Resumo:
OBJECTIVE: To evaluate an automated seizure detection (ASD) algorithm in EEGs with periodic and other challenging patterns. METHODS: Selected EEGs recorded in patients over 1year old were classified into four groups: A. Periodic lateralized epileptiform discharges (PLEDs) with intermixed electrical seizures. B. PLEDs without seizures. C. Electrical seizures and no PLEDs. D. No PLEDs or seizures. Recordings were analyzed by the Persyst P12 software, and compared to the raw EEG, interpreted by two experienced neurophysiologists; Positive percent agreement (PPA) and false-positive rates/hour (FPR) were calculated. RESULTS: We assessed 98 recordings (Group A=21 patients; B=29, C=17, D=31). Total duration was 82.7h (median: 1h); containing 268 seizures. The software detected 204 (=76.1%) seizures; all ictal events were captured in 29/38 (76.3%) patients; in only in 3 (7.7%) no seizures were detected. Median PPA was 100% (range 0-100; interquartile range 50-100), and the median FPR 0/h (range 0-75.8; interquartile range 0-4.5); however, lower performances were seen in the groups containing periodic discharges. CONCLUSION: This analysis provides data regarding the yield of the ASD in a particularly difficult subset of EEG recordings, showing that periodic discharges may bias the results. SIGNIFICANCE: Ongoing refinements in this technique might enhance its utility and lead to a more extensive application.
Resumo:
The safe and responsible development of engineered nanomaterials (ENM), nanotechnology-based materials and products, together with the definition of regulatory measures and implementation of "nano"-legislation in Europe require a widely supported scientific basis and sufficient high quality data upon which to base decisions. At the very core of such a scientific basis is a general agreement on key issues related to risk assessment of ENMs which encompass the key parameters to characterise ENMs, appropriate methods of analysis and best approach to express the effect of ENMs in widely accepted dose response toxicity tests. The following major conclusions were drawn: Due to high batch variability of ENMs characteristics of commercially available and to a lesser degree laboratory made ENMs it is not possible to make general statements regarding the toxicity resulting from exposure to ENMs. 1) Concomitant with using the OECD priority list of ENMs, other criteria for selection of ENMs like relevance for mechanistic (scientific) studies or risk assessment-based studies, widespread availability (and thus high expected volumes of use) or consumer concern (route of consumer exposure depending on application) could be helpful. The OECD priority list is focussing on validity of OECD tests. Therefore source material will be first in scope for testing. However for risk assessment it is much more relevant to have toxicity data from material as present in products/matrices to which men and environment are be exposed. 2) For most, if not all characteristics of ENMs, standardized methods analytical methods, though not necessarily validated, are available. Generally these methods are only able to determine one single characteristic and some of them can be rather expensive. Practically, it is currently not feasible to fully characterise ENMs. Many techniques that are available to measure the same nanomaterial characteristic produce contrasting results (e.g. reported sizes of ENMs). It was recommended that at least two complementary techniques should be employed to determine a metric of ENMs. The first great challenge is to prioritise metrics which are relevant in the assessment of biological dose response relations and to develop analytical methods for characterising ENMs in biological matrices. It was generally agreed that one metric is not sufficient to describe fully ENMs. 3) Characterisation of ENMs in biological matrices starts with sample preparation. It was concluded that there currently is no standard approach/protocol for sample preparation to control agglomeration/aggregation and (re)dispersion. It was recommended harmonization should be initiated and that exchange of protocols should take place. The precise methods used to disperse ENMs should be specifically, yet succinctly described within the experimental section of a publication. 4) ENMs need to be characterised in the matrix as it is presented to the test system (in vitro/ in vivo). 5) Alternative approaches (e.g. biological or in silico systems) for the characterisation of ENMS are simply not possible with the current knowledge. Contributors: Iseult Lynch, Hans Marvin, Kenneth Dawson, Markus Berges, Diane Braguer, Hugh J. Byrne, Alan Casey, Gordon Chambers, Martin Clift, Giuliano Elia1, Teresa F. Fernandes, Lise Fjellsbø, Peter Hatto, Lucienne Juillerat, Christoph Klein, Wolfgang Kreyling, Carmen Nickel1, and Vicki Stone.
Resumo:
While the incidence of sleep disorders is continuously increasing in western societies, there is a clear demand for technologies to asses sleep-related parameters in ambulatory scenarios. The present study introduces a novel concept of accurate sensor to measure RR intervals via the analysis of photo-plethysmographic signals recorded at the wrist. In a cohort of 26 subjects undergoing full night polysomnography, the wrist device provided RR interval estimates in agreement with RR intervals as measured from standard electrocardiographic time series. The study showed an overall agreement between both approaches of 0.05 ± 18 ms. The novel wrist sensor opens the door towards a new generation of comfortable and easy-to-use sleep monitors.
Resumo:
L'article met en évidence la nécessité de prendre en compte le registre des valeurs, engagées dans nos croyances, lorsque nous cherchons à évaluer les méthodes psychothérapeutiques et à les valider scientifiquement. Après avoir montré l'apport de l'anthropologie clinique pour une telle démarche et précisé le lien réunissant science et croyance, il propose une double clarification qui apparaît indispensable à opérer en vue de valider une méthode psychothérapeutique, à savoir une clarification d'ordre épistémologique et scientifique.
Resumo:
The genotyping of human papillomaviruses (HPV) is essential for the surveillance of HPV vaccines. We describe and validate a low-cost PGMY-based PCR assay (PGMY-CHUV) for the genotyping of 31 HPV by reverse blotting hybridization (RBH). Genotype-specific detection limits were 50 to 500 genome equivalents per reaction. RBH was 100% specific and 98.61% sensitive using DNA sequencing as the gold standard (n = 1,024 samples). PGMY-CHUV was compared to the validated and commercially available linear array (Roche) on 200 samples. Both assays identified the same positive (n = 182) and negative samples (n = 18). Seventy-six percent of the positives were fully concordant after restricting the comparison to the 28 genotypes shared by both assays. At the genotypic level, agreement was 83% (285/344 genotype-sample combinations; κ of 0.987 for single infections and 0.853 for multiple infections). Fifty-seven of the 59 discordant cases were associated with multiple infections and with the weakest genotypes within each sample (P < 0.0001). PGMY-CHUV was significantly more sensitive for HPV56 (P = 0.0026) and could unambiguously identify HPV52 in mixed infections. PGMY-CHUV was reproducible on repeat testing (n = 275 samples; 392 genotype-sample combinations; κ of 0.933) involving different reagents lots and different technicians. Discordant results (n = 47) were significantly associated with the weakest genotypes in samples with multiple infections (P < 0.0001). Successful participation in proficiency testing also supported the robustness of this assay. The PGMY-CHUV reagent costs were estimated at $2.40 per sample using the least expensive yet proficient genotyping algorithm that also included quality control. This assay may be used in low-resource laboratories that have sufficient manpower and PCR expertise.
Resumo:
BACKGROUND: Genotypes obtained with commercial SNP arrays have been extensively used in many large case-control or population-based cohorts for SNP-based genome-wide association studies for a multitude of traits. Yet, these genotypes capture only a small fraction of the variance of the studied traits. Genomic structural variants (GSV) such as Copy Number Variation (CNV) may account for part of the missing heritability, but their comprehensive detection requires either next-generation arrays or sequencing. Sophisticated algorithms that infer CNVs by combining the intensities from SNP-probes for the two alleles can already be used to extract a partial view of such GSV from existing data sets. RESULTS: Here we present several advances to facilitate the latter approach. First, we introduce a novel CNV detection method based on a Gaussian Mixture Model. Second, we propose a new algorithm, PCA merge, for combining copy-number profiles from many individuals into consensus regions. We applied both our new methods as well as existing ones to data from 5612 individuals from the CoLaus study who were genotyped on Affymetrix 500K arrays. We developed a number of procedures in order to evaluate the performance of the different methods. This includes comparison with previously published CNVs as well as using a replication sample of 239 individuals, genotyped with Illumina 550K arrays. We also established a new evaluation procedure that employs the fact that related individuals are expected to share their CNVs more frequently than randomly selected individuals. The ability to detect both rare and common CNVs provides a valuable resource that will facilitate association studies exploring potential phenotypic associations with CNVs. CONCLUSION: Our new methodologies for CNV detection and their evaluation will help in extracting additional information from the large amount of SNP-genotyping data on various cohorts and use this to explore structural variants and their impact on complex traits.
Resumo:
False identity documents constitute a potential powerful source of forensic intelligence because they are essential elements of transnational crime and provide cover for organized crime. In previous work, a systematic profiling method using false documents' visual features has been built within a forensic intelligence model. In the current study, the comparison process and metrics lying at the heart of this profiling method are described and evaluated. This evaluation takes advantage of 347 false identity documents of four different types seized in two countries whose sources were known to be common or different (following police investigations and dismantling of counterfeit factories). Intra-source and inter-sources variations were evaluated through the computation of more than 7500 similarity scores. The profiling method could thus be validated and its performance assessed using two complementary approaches to measuring type I and type II error rates: a binary classification and the computation of likelihood ratios. Very low error rates were measured across the four document types, demonstrating the validity and robustness of the method to link documents to a common source or to differentiate them. These results pave the way for an operational implementation of a systematic profiling process integrated in a developed forensic intelligence model.
Resumo:
High performance liquid chromatography (HPLC) is the reference method for measuring concentrations of antimicrobials in blood. This technique requires careful sample preparation. Protocols using organic solvents and/or solid extraction phases are time consuming and entail several manipulations, which can lead to partial loss of the determined compound and increased analytical variability. Moreover, to obtain sufficient material for analysis, at least 1 ml of plasma is required. This constraint makes it difficult to determine drug levels when blood sample volumes are limited. However, drugs with low plasma-protein binding can be reliably extracted from plasma by ultra-filtration with a minimal loss due to the protein-bound fraction. This study validated a single-step ultra-filtration method for extracting fluconazole (FLC), a first-line antifungal agent with a weak plasma-protein binding, from plasma to determine its concentration by HPLC. Spiked FLC standards and unknowns were prepared in human and rat plasma. Samples (240 microl) were transferred into disposable microtube filtration units containing cellulose or polysulfone filters with a 5 kDa cut-off. After centrifugation for 60 min at 15000g, FLC concentrations were measured by direct injection of the filtrate into the HPLC. Using cellulose filters, low molecular weight proteins were eluted early in the chromatogram and well separated from FLC that eluted at 8.40 min as a sharp single peak. In contrast, with polysulfone filters several additional peaks interfering with the FLC peak were observed. Moreover, the FLC recovery using cellulose filters compared to polysulfone filters was higher and had a better reproducibility. Cellulose filters were therefore used for the subsequent validation procedure. The quantification limit was 0.195 mgl(-1). Standard curves with a quadratic regression coefficient > or = 0.9999 were obtained in the concentration range of 0.195-100 mgl(-1). The inter and intra-run accuracies and precisions over the clinically relevant concentration range, 1.875-60 mgl(-1), fell well within the +/-15% variation recommended by the current guidelines for the validation of analytical methods. Furthermore, no analytical interference was observed with commonly used antibiotics, antifungals, antivirals and immunosuppressive agents. Ultra-filtration of plasma with cellulose filters permits the extraction of FLC from small volumes (240 microl). The determination of FLC concentrations by HPLC after this single-step procedure is selective, precise and accurate.