176 resultados para REMODELING
Resumo:
Lymphatic vessels transport fluid, antigens, and immune cells to the lymph nodes to orchestrate adaptive immunity and maintain peripheral tolerance. Lymphangiogenesis has been associated with inflammation, cancer metastasis, autoimmunity, tolerance and transplant rejection, and thus, targeted lymphatic ablation is a potential therapeutic strategy for treating or preventing such events. Here we define conditions that lead to specific and local closure of the lymphatic vasculature using photodynamic therapy (PDT). Lymphatic-specific PDT was performed by irradiation of the photosensitizer verteporfin that effectively accumulates within collecting lymphatic vessels after local intradermal injection. We found that anti-lymphatic PDT induced necrosis of endothelial cells and pericytes, which preceded the functional occlusion of lymphatic collectors. This was specific to lymphatic vessels at low verteporfin dose, while higher doses also affected local blood vessels. In contrast, light dose (fluence) did not affect blood vessel perfusion, but did affect regeneration time of occluded lymphatic vessels. Lymphatic vessels eventually regenerated by recanalization of blocked collectors, with a characteristic hyperplasia of peri-lymphatic smooth muscle cells. The restoration of lymphatic function occurred with minimal remodeling of non-lymphatic tissue. Thus, anti-lymphatic PDT allows control of lymphatic ablation and regeneration by alteration of light fluence and photosensitizer dose.
Resumo:
It is currently unclear whether tissue changes surrounding multifocal epithelial tumors are a cause or consequence of cancer. Here, we provide evidence that loss of mesenchymal Notch/CSL signaling causes tissue alterations, including stromal atrophy and inflammation, which precede and are potent triggers for epithelial tumors. Mice carrying a mesenchymal-specific deletion of CSL/RBP-Jκ, a key Notch effector, exhibit spontaneous multifocal keratinocyte tumors that develop after dermal atrophy and inflammation. CSL-deficient dermal fibroblasts promote increased tumor cell proliferation through upregulation of c-Jun and c-Fos expression and consequently higher levels of diffusible growth factors, inflammatory cytokines, and matrix-remodeling enzymes. In human skin samples, stromal fields adjacent to multifocal premalignant actinic keratosis lesions exhibit decreased Notch/CSL signaling and associated molecular changes. Importantly, these changes in gene expression are also induced by UVA, a known environmental cause of cutaneous field cancerization and skin cancer.
Resumo:
BACKGROUND: Obesity is a major health problem in the Western world. Among obese subjects cardiac pathology is common, but conventional noninvasive imaging modalities are often suboptimal for detailed evaluation of cardiac structure and function. We investigated whether cardiovascular magnetic resonance imaging (CMR) can better characterize possible cardiac abnormalities associated with obesity, in the absence of other confounding comorbidities. METHODS: In this prospective cross-sectional study, CMR was used to quantify left and right ventricular volumes, ejection fraction, mass, cardiac output, and apical left ventricular rotation in 25 clinically healthy obese men and 25 age-matched lean controls. RESULTS: Obese subjects had higher left ventricular mass (203 +/- 38 g vs. 163 +/- 22 g, p < 0.001), end-diastolic volume (176 +/- 29 mL vs. 156 +/- 25 mL, p < 0.05), and cardiac output (8.2 +/- 1.2 L/min vs. 6.4 +/- 1.3 L/min, p < 0.001). The obese also had increased right ventricular mass (105 +/- 25 g vs. 87 +/- 18 g, p < 0.005) and end-diastolic volume (179 +/- 36 mL vs. 155 +/- 28 mL, p < 0.05). When indexed for height, differences in left and right ventricular mass, and left ventricular end-diastolic volume remained significant. Apical left ventricular rotation and rotational velocity patterns were also different between obese and lean subjects. CONCLUSIONS: Obesity is independently associated with remodeling of the heart. Cardiovascular magnetic resonance imaging identifies subtle cardiac abnormalities and may be the preferred imaging technique to evaluate cardiac structure and function in the obese.
Resumo:
PURPOSE: Atherosclerosis results in a considerable medical and socioeconomic impact on society. We sought to evaluate novel magnetic resonance imaging (MRI) angiography and vessel wall sequences to visualize and quantify different morphologic stages of atherosclerosis in a Watanabe hereditary hyperlipidemic (WHHL) rabbit model. MATERIAL AND METHODS: Aortic 3D steady-state free precession angiography and subrenal aortic 3D black-blood fast spin-echo vessel wall imaging pre- and post-Gadolinium (Gd) was performed in 14 WHHL rabbits (3 normal, 6 high-cholesterol diet, and 5 high-cholesterol diet plus endothelial denudation) on a commercial 1.5 T MR system. Angiographic lumen diameter, vessel wall thickness, signal-/contrast-to-noise analysis, total vessel area, lumen area, and vessel wall area were analyzed semiautomatically. RESULTS: Pre-Gd, both lumen and wall dimensions (total vessel area, lumen area, vessel wall area) of group 2 + 3 were significantly increased when compared with those of group 1 (all P < 0.01). Group 3 animals had significantly thicker vessel walls than groups 1 and 2 (P < 0.01), whereas angiographic lumen diameter was comparable among all groups. Post-Gd, only diseased animals of groups 2 + 3 showed a significant (>100%) signal-to-noise ratio and contrast-to-noise increase. CONCLUSIONS: A combination of novel 3D magnetic resonance angiography and high-resolution 3D vessel wall MRI enabled quantitative characterization of various atherosclerotic stages including positive arterial remodeling and Gd uptake in a WHHL rabbit model using a commercially available 1.5 T MRI system.
Resumo:
Wound healing proceeds by the concerted action of a variety of signals that have been well identified. However, the mechanisms integrating them and coordinating their effects are poorly known. Herein, we reveal how PPARbeta/delta (PPAR: peroxisome proliferator-activated receptor) follows a balanced pattern of expression controlled by a crosstalk between inflammatory cytokines and TGF-beta1. Whereas conditions that mimic the initial inflammatory events stimulate PPARbeta/delta expression, TGF-beta1/Smad3 suppresses this inflammation-induced PPARbeta/delta transcription, as seen in the late re-epithelialization/remodeling events. This TGF-beta1/Smad3 action involves an inhibitory effect on AP-1 activity and DNA binding that results in an inhibition of the AP-1-driven induction of the PPARbeta/delta promoter. As expected from these observations, wound biopsies from Smad3-null mice showed sustained PPARbeta expression as compared to those of their wild-type littermates. Together, these findings suggest a mechanism for setting the necessary balance between inflammatory signals, which trigger PPARbeta/delta expression, and TGF-beta1/Smad3 that governs the timely decrease of this expression as wound healing proceeds to completion.
Resumo:
The TNF family member receptor activator for NF-κB ligand (RANKL) and its receptors RANK and osteoprotegerin are key regulators of bone remodeling but also influence cellular functions of tumor and immune effector cells. In this work, we studied the involvement of RANK-RANKL interaction in NK cell-mediated immunosurveillance of acute myeloid leukemia (AML). Substantial levels of RANKL were found to be expressed on leukemia cells in 53 of 78 (68%) investigated patients. Signaling via RANKL into the leukemia cells stimulated their metabolic activity and induced the release of cytokines involved in AML pathophysiology. In addition, the immunomodulatory factors released by AML cells upon RANKL signaling impaired the anti-leukemia reactivity of NK cells and induced RANK expression, and NK cells of AML patients displayed significantly upregulated RANK expression compared with healthy controls. Treatment of AML cells with the clinically available RANKL Ab Denosumab resulted in enhanced NK cell anti-leukemia reactivity. This was due to both blockade of the release of NK-inhibitory factors by AML cells and prevention of RANK signaling into NK cells. The latter was found to directly impair NK anti-leukemia reactivity with a more pronounced effect on IFN-γ production compared with cytotoxicity. Together, our data unravel a previously unknown function of the RANK-RANKL molecule system in AML pathophysiology as well as NK cell function and suggest that neutralization of RANKL with therapeutic Abs may serve to reinforce NK cell reactivity in leukemia patients.
Resumo:
Invasive aspergillosis (IA) is a life-threatening infection due to Aspergillus fumigatus and other Aspergillus spp. Drugs targeting the fungal cell membrane (triazoles, amphotericin B) or cell wall (echinocandins) are currently the sole therapeutic options against IA. Their limited efficacy and the emergence of resistance warrant the identification of new antifungal targets. Histone deacetylases (HDACs) are enzymes responsible of the deacetylation of lysine residues of core histones, thus controlling chromatin remodeling and transcriptional activation. HDACs also control the acetylation and activation status of multiple non-histone proteins, including the heat shock protein 90 (Hsp90), an essential molecular chaperone for fungal virulence and antifungal resistance. This review provides an overview of the different HDACs in Aspergillus spp. as well as their respective contribution to total HDAC activity, fungal growth, stress responses, and virulence. The potential of HDAC inhibitors, currently under development for cancer therapy, as novel alternative antifungal agents against IA is discussed.
Resumo:
Lithium-induced nephrogenic diabetes insipidus (NDI) is accompanied by polyuria, downregulation of aquaporin 2 (AQP2), and cellular remodeling of the collecting duct (CD). The amiloride-sensitive epithelial sodium channel (ENaC) is a likely candidate for lithium entry. Here, we subjected transgenic mice lacking αENaC specifically in the CD (knockout [KO] mice) and littermate controls to chronic lithium treatment. In contrast to control mice, KO mice did not markedly increase their water intake. Furthermore, KO mice did not demonstrate the polyuria and reduction in urine osmolality induced by lithium treatment in the control mice. Lithium treatment reduced AQP2 protein levels in the cortex/outer medulla and inner medulla (IM) of control mice but only partially reduced AQP2 levels in the IM of KO mice. Furthermore, lithium induced expression of H(+)-ATPase in the IM of control mice but not KO mice. In conclusion, the absence of functional ENaC in the CD protects mice from lithium-induced NDI. These data support the hypothesis that ENaC-mediated lithium entry into the CD principal cells contributes to the pathogenesis of lithium-induced NDI.
Resumo:
Résumé de l'article : L'hyperplasie intimale est un processus de remodelage vasculaire ubiquitaire après une lésion, pouvant menacer la perméabilité de tout type de reconstruction vasculaire. Les mécanismes physiopathologiques impliqués dans le développement de l'hyperplasie intimale ne sont que partiellement élucidés. Il est par conséquent nécessaire d'effectuer des recherches complémentaires afin d'en améliorer la compréhension et ainsi permettre l'élaboration de nouvelles stratégies thérapeutiques médicamenteuses. La culture de veines en milieu statique permet le développement de l'hyperplasie intimale. Ce modèle maintient la viabilité tissulaire, comme décrit précédemment dans d'autres études, mais empêche l'analyse des paramètres hémodynamiques. La mise au point d'un modèle de perfusion in vitro permettant la perfusion de segments vasculaires représente une approche expérimentale intégrant les différents facteurs hémodynamiques. Le système de perfusion (Ex Vivo Vein Support System) que nous avons élaboré conserve l'intégrité pariétale ainsi que les propriétés vasomotrices des veines pour une durée de 14 jours. Cette étude démontre que les deux modèles permettent le développement de l'hyperplasie intimale. Toutefois, les propriétés vasomotrices ainsi que l'influence des paramètres hémodynamiques ne peuvent être analysées que par l'utilisation du système de perfusion. Ce dernier a permis de perfuser des vaisseaux humains sans contamination bactérienne tout en maintenant l'intégrité cellulaire. Ce modèle de perfusion se rapproche plus des conditions hémodynamiques rencontrées in vivo que le modèle statique. Abstract : Background. Intimal hyperplasia (IH) is a vascular remodeling process which often leads to failure of arterial bypass or hemodialysis access. Experimental and clinical work have provided insight in IH development; however, further studies under precise con-trolled conditions are required to improve therapeutic strategies to inhibit IH development. Ex vivo perfusion of human vessel segments under standardized hemodynamic conditions may provide an adequate experimental approach for this purpose. Therefore, chronically perfused venous segments were studied and compared to traditional static culture procedures with regard to functional and histomorphologic characteristics as well as gene expression. Materials and methods. Static vein culture allowing high tissue viability was performed as previously described. Ex vivo vein support system (EVVSS) was performed using a vein support system consisting of an incubator with a perfusion chamber and a pump. EVVSS allows vessel perfusion under continuous flow while maintaining controlled hemodynamic conditions. Each human saphenous vein was divided in two parts, one cultured in a Pyrex dish and the other part perfused in EVVSS for 14 days. Testing of vasomotion, histomorphometry, expression of CD 31, Factor VIII, MIB 1, α-actin, and PAI-1 were determined before and after 14 days of either experimental conditions. Results, Human venous segments cultured under traditional or perfused conditions exhibited similar IH after 14 days as shown by histomorphometry. Smooth-muscle cell ( SMC) was preserved after chronic perfusion. Although integrity of both endothelial and smooth-muscle cells appears to be maintained in both culture conditions as confirmed by CD31, factor VIII and α-actin expression, a few smooth-muscle cells in the media stained positive for factor VIII. Cell-proliferation marker MIB-1 was also detected in the two settings and PAI-1 mRNA expression and activity increased significantly after 14 days of culture and perfusion. Conclusion. This study demonstrates the feasibility to chronically perfuse human vessels under sterile conditions with preservation of cellular integrity and vascular contractility. To gain insights into the mechanisms leading to IH, it will now be possible to study vascular remodeling not only under static conditions but also in hemodynamic environment mimicking as closely as possible the flow conditions encountered in reconstructive vascular surgery.
Resumo:
Understanding the extent of genomic transcription and its functional relevance is a central goal in genomics research. However, detailed genome-wide investigations of transcriptome complexity in major mammalian organs have been scarce. Here, using extensive RNA-seq data, we show that transcription of the genome is substantially more widespread in the testis than in other organs across representative mammals. Furthermore, we reveal that meiotic spermatocytes and especially postmeiotic round spermatids have remarkably diverse transcriptomes, which explains the high transcriptome complexity of the testis as a whole. The widespread transcriptional activity in spermatocytes and spermatids encompasses protein-coding and long noncoding RNA genes but also poorly conserves intergenic sequences, suggesting that it may not be of immediate functional relevance. Rather, our analyses of genome-wide epigenetic data suggest that this prevalent transcription, which most likely promoted the birth of new genes during evolution, is facilitated by an overall permissive chromatin in these germ cells that results from extensive chromatin remodeling.
Resumo:
PURPOSE: Almost five years have elapsed since the introduction of latanoprost on several markets and considering the large number of publications dealing with it, the authors felt that it was worth re-evaluating the drug. METHODS: The criterion used to select trials for inclusion in the review was: all articles mentioning the drug in common electronic data-bases; these were then screened and considered, on the basis of methodological quality. RESULTS: Experimental data suggest that latanoprost acts by remodeling the extracellular matrix in the ciliary muscle, thus increasing the flow of aqueous humor through the ciliary muscle bundles of the uveoscleral pathway. POAG: Latanoprost persistently improves the pulsatile ocular blood flow in primary open angle glaucoma (POAG). Recent trials confirmed the greater IOP-lowering efficacy of latanoprost vs. timolol, dorzolamide, brimonidine and unoprostone. Trials lasting up to 24 months showed that latanoprost is effective in long-term treatment of POAG and ocular hypertension (OH), with no signs of loss of efficacy when compared to timolol or dorzolamide. Latanoprost provides better control of circadian IOP. Non-responders to beta-blockers should preferably be switched to latanoprost monotherapy before a combination therapy is started. The possibility of a fixed combination of latanoprost and timolol has been explored, with promising results. NTG: Latanoprost is effective in normal tension glaucoma (NTG), lowering IOP, improving pulsatile ocular blood flow and increasing ocular perfusion pressure. OTHER GLAUCOMAS: Latanoprost may provide effective IOP control in angle-closure glaucoma after iridectomy, in pigmentary glaucoma, glaucoma after cataract extraction and steroid-induced glaucoma. However, latanoprost was effective in only a minority of pediatric cases of glaucoma and is contraindicated in all forms of uveitic glaucoma. SAFETY: In the articles reviewed, new or duration-related adverse events were reported.
Resumo:
The best indirect evidence that increased bone turnover contributes to fracture risk is the fact that most of the proven therapies for osteoporosis are inhibitors of bone turnover. The evidence base that we can use biochemical markers of bone turnover in the assessment of fracture risk is somewhat less convincing. This relates to natural variability in the markers, problems with the assays, disparity in the statistical analyses of relevant studies and the independence of their contribution to fracture risk. More research is clearly required to address these deficiencies before biochemical markers might contribute a useful independent risk factor for inclusion in FRAX(®).
Resumo:
To analyze the effects of triamcinolone intravitreal injection on the wound healing processes after argon laser retinal photocoagulation, wild type C57BL/6J mice, 8-12 weeks old underwent a standard argon laser photocoagulation protocol. After pentobarbital anesthesia and pupil dilatation, argon laser lesions were induced (50microm, 400mW, 0.05s). Two photocoagulation impacts created two disc diameters from the optic nerve in both eyes. The photocoagulated mice were divided into four groups: Group I (n=12), photocoagulation controls, did not receive any intravitreous injection. Group II (n=12), received an intravitreous injection of 1microl of balanced salt solution (BSS). Group III (n=12), received an intravitreous injection of 1microl containing 15microg of triamcinolone acetonide (TAAC) in BSS. Two mice from each of these three groups were sacrificed at 1, 3, 7, 14 days and 2 and 4 months after photocoagulation. Group IV (n=10) received 1.5, 3, 7.5, 15, or 30microg of TAAC and were all sacrificed on day 14. The enucleated eyes were subjected to systematic analysis of the cellular remodeling processes taking place within the laser lesion and its vicinity. To this purpose, specific antibodies against GFAP, von Willebrand factor, F4/80 and KI67 were used for the detection of astrocytes, activated Müller cells, vascular endothelial cells, infiltrating inflammatory cells and actively proliferating cells. TUNEL reaction was also carried out along with nuclear DAPI staining. Temporal and spatial observations of the created photocoagulation lesions demonstrate that 24h following the argon laser beam, a localized and well-delineated affection of the RPE cells and choroid is observed in mice in Groups I and II. The inner retinal layers in these mice eyes are preserved while TUNEL positive (apoptotic) cells are observed at the retinal outer nuclear layer level. At this stage, intense staining with GFAP is associated with activated retinal astrocytes and Müller cells throughout the laser path. From day 3 after photocoagulation, dilated new choroidal capillaries are detected on the edges of the laser lesion. These processes are accompanied by infiltration of inflammatory cells and the presence of proliferating cells within the lesion site. Mice in Group III treated with 15microg/mul of triamcinolone showed a decreased number of infiltrating inflammatory cells and proliferating cells, which was not statistically significant compared to uninjected laser treated controls. The development of new choroidal capillaries on the edges of the laser lesion was also inhibited during the first 2 months after photocoagulation. However, on month 4 the growth of new vessels was observed in these mice treated with TAAC. Mice of Group IV did not show any development of new capillaries even with small doses. After argon laser photocoagulation of the mouse eye, intravitreal injection of triamcinolone markedly influenced the retina and choroid remodeling and healing processes. Triamcinolone is a powerful inhibitor of the formation of neovessels in this model. However, this inhibition is transient. These observations should provide a practical insight for the mode of TAAC use in patients with wet AMD.
Resumo:
A role for gut hormone in bone physiology has been suspected. We evidenced alterations of microstructural morphology (trabecular and cortical) and bone strength (both at the whole-bone - and tissue-level) in double incretin receptor knock-out (DIRKO) mice as compared to wild-type littermates. These results support a role for gut hormones in bone physiology. INTRODUCTION: The two incretins, glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), have been shown to control bone remodeling and strength. However, lessons from single incretin receptor knock-out mice highlighted a compensatory mechanism induced by elevated sensitivity to the other gut hormone. As such, it is unclear whether the bone alterations observed in GIP or GLP-1 receptor deficient animals resulted from the lack of a functional gut hormone receptor, or by higher sensitivity for the other gut hormone. The aims of the present study were to investigate the bone microstructural morphology, as well as bone tissue properties, in double incretin receptor knock-out (DIRKO) mice. METHODS: Twenty-six-week-old DIRKO mice were age- and sex-matched with wild-type (WT) littermates. Bone microstructural morphology was assessed at the femur by microCT and quantitative X-ray imaging, while tissue properties were investigated by quantitative backscattered electron imaging and Fourier-transformed infrared microscopy. Bone mechanical response was assessed at the whole-bone- and tissue-level by 3-point bending and nanoindentation, respectively. RESULTS: As compared to WT animals, DIRKO mice presented significant augmentations in trabecular bone mass and trabecular number whereas bone outer diameter, cortical thickness, and cortical area were reduced. At the whole-bone-level, yield stress, ultimate stress, and post-yield work to fracture were significantly reduced in DIRKO animals. At the tissue-level, only collagen maturity was reduced by 9 % in DIRKO mice leading to reductions in maximum load, hardness, and dissipated energy. CONCLUSIONS: This study demonstrated the critical role of gut hormones in controlling bone microstructural morphology and tissue properties.
Resumo:
Early in the 1990s, several case series described adults suffering from dysphagia and children with refractory reflux symptoms, both accompanied by an eosinophil-predominant infiltration, thereby conclusively distinguishing it from gastroesophageal reflux disease. Eosinophilic esophagitis (EoE) was recognized as its own entity in the adult and in the pediatric literature. In the last decade, evidence has accumulated that EoE represents a T-helper (Th)2-type inflammatory disease. Remodeling of the esophagus is a hallmark of EoE, leading to esophageal dysfunction and bolus impaction. Familial occurrence and disease association with single-nucleotide polymorphisms underscore the influence of genetics in this disease. Eosinophilic esophagitis may affect individuals at any age, although the clinical presentation is highly age dependent. There is a significant allergic bias in the EoE population, with the majority of patients having concurrent allergic rhinitis, asthma, eczema, and/or a history of atopy. One noteworthy difference is that in children, EoE seems to be primarily a food antigen-driven disease, whereas in adults, mainly aeroallergen sensitization has been observed. Treatment modalities for EoE include the 3Ds: drugs, diet, and dilation. The crucial question of whether adult and pediatric EoE are different phenotypes of one single entity or whether we are confronted with two different diseases is still open. Here, we review similarities and differences between EoE in adults and children.