253 resultados para Postmortem Human Brain


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ample evidence indicates that inhibitory control (IC), a key executive component referring to the ability to suppress cognitive or motor processes, relies on a right-lateralized fronto-basal brain network. However, whether and how IC can be improved with training and the underlying neuroplastic mechanisms remains largely unresolved. We used functional and structural magnetic resonance imaging to measure the effects of 2 weeks of training with a Go/NoGo task specifically designed to improve frontal top-down IC mechanisms. The training-induced behavioral improvements were accompanied by a decrease in neural activity to inhibition trials within the right pars opercularis and triangularis, and in the left pars orbitalis of the inferior frontal gyri. Analyses of changes in brain anatomy induced by the IC training revealed increases in grey matter volume in the right pars orbitalis and modulations of white matter microstructure in the right pars triangularis. The task-specificity of the effects of training was confirmed by an absence of change in neural activity to a control working memory task. Our combined anatomical and functional findings indicate that differential patterns of functional and structural plasticity between and within inferior frontal gyri enhanced the speed of top-down inhibition processes and in turn IC proficiency. The results suggest that training-based interventions might help overcoming the anatomic and functional deficits of inferior frontal gyri manifesting in inhibition-related clinical conditions. More generally, we demonstrate how multimodal neuroimaging investigations of training-induced neuroplasticity enable revealing novel anatomo-functional dissociations within frontal executive brain networks. Hum Brain Mapp 36:2527-2543, 2015. © 2015 Wiley Periodicals, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

UNLABELLED: Glioblastoma (GBM) is the most aggressive human brain tumor. Although several molecular subtypes of GBM are recognized, a robust molecular prognostic marker has yet to be identified. Here, we report that the stemness regulator Sox2 is a new, clinically important target of microRNA-21 (miR-21) in GBM, with implications for prognosis. Using the MiR-21-Sox2 regulatory axis, approximately half of all GBM tumors present in the Cancer Genome Atlas (TCGA) and in-house patient databases can be mathematically classified into high miR-21/low Sox2 (Class A) or low miR-21/high Sox2 (Class B) subtypes. This classification reflects phenotypically and molecularly distinct characteristics and is not captured by existing classifications. Supporting the distinct nature of the subtypes, gene set enrichment analysis of the TCGA dataset predicted that Class A and Class B tumors were significantly involved in immune/inflammatory response and in chromosome organization and nervous system development, respectively. Patients with Class B tumors had longer overall survival than those with Class A tumors. Analysis of both databases indicated that the Class A/Class B classification is a better predictor of patient survival than currently used parameters. Further, manipulation of MiR-21-Sox2 levels in orthotopic mouse models supported the longer survival of the Class B subtype. The MiR-21-Sox2 association was also found in mouse neural stem cells and in the mouse brain at different developmental stages, suggesting a role in normal development. Therefore, this mechanism-based classification suggests the presence of two distinct populations of GBM patients with distinguishable phenotypic characteristics and clinical outcomes. SIGNIFICANCE STATEMENT: Molecular profiling-based classification of glioblastoma (GBM) into four subtypes has substantially increased our understanding of the biology of the disease and has pointed to the heterogeneous nature of GBM. However, this classification is not mechanism based and its prognostic value is limited. Here, we identify a new mechanism in GBM (the miR-21-Sox2 axis) that can classify ∼50% of patients into two subtypes with distinct molecular, radiological, and pathological characteristics. Importantly, this classification can predict patient survival better than the currently used parameters. Further, analysis of the miR-21-Sox2 relationship in mouse neural stem cells and in the mouse brain at different developmental stages indicates that miR-21 and Sox2 are predominantly expressed in mutually exclusive patterns, suggesting a role in normal neural development.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study analyzed high-density event-related potentials (ERPs) within an electrical neuroimaging framework to provide insights regarding the interaction between multisensory processes and stimulus probabilities. Specifically, we identified the spatiotemporal brain mechanisms by which the proportion of temporally congruent and task-irrelevant auditory information influences stimulus processing during a visual duration discrimination task. The spatial position (top/bottom) of the visual stimulus was indicative of how frequently the visual and auditory stimuli would be congruent in their duration (i.e., context of congruence). Stronger influences of irrelevant sound were observed when contexts associated with a high proportion of auditory-visual congruence repeated and also when contexts associated with a low proportion of congruence switched. Context of congruence and context transition resulted in weaker brain responses at 228 to 257 ms poststimulus to conditions giving rise to larger behavioral cross-modal interactions. Importantly, a control oddball task revealed that both congruent and incongruent audiovisual stimuli triggered equivalent non-linear multisensory interactions when congruence was not a relevant dimension. Collectively, these results are well explained by statistical learning, which links a particular context (here: a spatial location) with a certain level of top-down attentional control that further modulates cross-modal interactions based on whether a particular context repeated or changed. The current findings shed new light on the importance of context-based control over multisensory processing, whose influences multiplex across finer and broader time scales.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A novel approach to measure carbon dioxide (CO2) in gaseous samples, based on a precise and accurate quantification by (13)CO2 internal standard generated in situ is presented. The main goal of this study was to provide an innovative headspace-gas chromatography-mass spectrometry (HS-GC-MS) method applicable in the routine determination of CO2. The main drawback of the GC methods discussed in the literature for CO2 measurement is the lack of a specific internal standard necessary to perform quantification. CO2 measurement is still quantified by external calibration without taking into account analytical problems which can often occur considering gaseous samples. To avoid the manipulation of a stable isotope-labeled gas, we have chosen to generate in situ an internal labeled standard gas ((13)CO2) on the basis of the stoichiometric formation of CO2 by the reaction of hydrochloric acid (HCl) with sodium hydrogen carbonate (NaH(13)CO3). This method allows a precise measurement of CO2 concentration and was validated on various human postmortem gas samples in order to study its efficiency.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Islet-brain 1 (IB1), a regulator of the pancreatic beta-cell function in the rat, is homologous to JIP-1, a murine inhibitor of c-Jun amino-terminal kinase (JNK). Whether IB1 and JIP-1 are present in humans was not known. We report the sequence of the 2133-bp human IB1 cDNA, the expression, structure, and fine-mapping of the human IB1 gene, and the characterization of an IB1 pseudogene. Human IB1 is 94% identical to rat IB1. The tissue-specific expression of IB1 in human is similar to that observed in rodent. The IB1 gene contains 12 exons and maps to chromosome 11 (11p11.2-p12), a region that is deleted in DEFECT-11 syndrome. Apart from an IB1 pseudogene on chromosome 17 (17q21), no additional IB1-related gene was found in the human genome. Our data indicate that the sequence and expression pattern of IB1 are highly conserved between rodent and human and provide the necessary tools to investigate whether IB1 is involved in human diseases.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: Brain α2- and β-adrenoceptor alterations have been suggested in suicide and major depressive disorder. METHODS: The densities of α2-, β1- and β2-adrenoceptors in postmortem prefrontal cortex of 26 subjects with depression were compared with those of age-, gender- and postmortem delay-matched controls. The effect of antidepressant treatment on α2- and β-adrenoceptor densities was also evaluated. α2- and β-adrenoceptor densities were measured by saturation experiments with respective radioligands [(3)H]UK14304 and [(3)H]CGP12177. β1- and β2-adrenoceptor subtype densities were dissected by means of β1-adrenoceptor selective antagonist CGP20712A. RESULTS: Both, α2- and β1-adrenoceptors densities were higher in antidepressant-free depressed subjects (n=14) than those in matched controls (Δ~24%, p=0.013 and Δ~20%, p=0.044, respectively). In antidepressant-treated subjects (n=12), α2-adrenoceptor density remained increased over that in controls (Δ~20%), suggesting a resistance of α2-adrenoceptors to the down-regulatory effect of antidepressants. By contrast, β1-adrenoceptor density in antidepressant-treated depressed subjects was not different from controls, suggesting a possible down-regulation by antidepressants. The down-regulation of β1-adrenoceptor density in antidepressant-treated depressed subjects differs from the unaltered β1-adrenoceptor density observed in citalopram-treated rats and in a group of non-depressed subjects also treated with antidepressants (n=6). β2-adrenoceptor density was not altered in depressed subjects independently of treatment. LIMITATIONS: Antidepressant-treated subjects had been treated with a heterogeneous variety of antidepressant drugs. The results should be understood in the context of suicide victims with depression. CONCLUSIONS: These results show the up-regulation of brain α2- and β1-adrenoceptors in depression and suggest that the regulation induced by chronic antidepressant treatment would be altered in these subjects.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Saffaj et al. recently criticized our method of monitoring carbon dioxide in human postmortem cardiac gas samples using Headspace-Gas Chromatography-Mass Spectrometry. According to the authors, their demonstration, based on the latest SFSTP guidelines (established after 2007 [1,2]) fitted for the validation of drug monitoring bioanalytical methods, has put in evidence potential errors. However, our validation approach was built using SFSTP guidelines established before 2007 [3-6]. We justify the use of these guidelines because of the post-mortem context of the study (and not clinical) and the gaseous state of the sample (and not solid or liquid). Using these guidelines, our validation remains correct.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The presence of three water channels (aquaporins, AQP), AQP1, AQP4 and AQP9 were observed in normal brain and several rodent models of brain pathologies. Little is known about AQP distribution in the primate brain and its knowledge will be useful for future testing of drugs aimed at preventing brain edema formation. We studied the expression and cellular distribution of AQP1, 4 and 9 in the non-human primate brain. The distribution of AQP4 in the non-human primate brain was observed in perivascular astrocytes, comparable to the observation made in the rodent brain. In contrast with rodent, primate AQP1 is expressed in the processes and perivascular endfeet of a subtype of astrocytes mainly located in the white matter and the glia limitans, possibly involved in water homeostasis. AQP1 was also observed in neurons innervating the pial blood vessels, suggesting a possible role in cerebral blood flow regulation. As described in rodent, AQP9 mRNA and protein were detected in astrocytes and in catecholaminergic neurons. However additional locations were observed for AQP9 in populations of neurons located in several cortical areas of primate brains. This report describes a detailed study of AQP1, 4 and 9 distributions in the non-human primate brain, which adds to the data already published in rodent brains. This relevant species differences have to be considered carefully to assess potential drugs acting on AQPs non-human primate models before entering human clinical trials.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Most models for tauopathy use a mutated form of the Tau gene, MAPT, that is found in frontotemporal dementia with Parkinsonism linked to chromosome 17 (FTDP-17) and that leads to rapid neurofibrillary degeneration (NFD). Use of a wild-type (WT) form of human Tau protein to model the aggregation and associated neurodegenerative processes of Tau in the mouse brain has thus far been unsuccessful. In the present study, we generated an original "sporadic tauopathy-like" model in the rat hippocampus, encoding six Tau isoforms as found in humans, using lentiviral vectors (LVs) for the delivery of a human WT Tau. The overexpression of human WT Tau in pyramidal neurons resulted in NFD, the morphological characteristics and kinetics of which reflected the slow and sporadic neurodegenerative processes observed in sporadic tauopathies, unlike the rapid neurodegenerative processes leading to cell death and ghost tangles triggered by the FTDP-17 mutant Tau P301L. This new model highlights differences in the molecular and cellular mechanisms underlying the pathological processes induced by WT and mutant Tau and suggests that preference should be given to animal models using WT Tau in the quest to understand sporadic tauopathies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Rapport de synthèse : La présence de trois canaux d'eau, appelés aquaporines AQP1, AQP4 et AQP9, a été observée dans le cerveau sain ainsi que dans plusieurs modèles des pathologies cérébrales des rongeurs. Peu est connu sur la distribution des AQP dans le cerveau des primates. Cette connaissance sera utile pour des futurs essaies médicamenteux qui visent à prévenir la formation des oedèmes cérébraux. Nous avons étudié l'expression et la distribution cellulaire des AQP1, 4 et 9 dans le cerveau primate non-humain. La distribution des AQP4 dans le cerveau primate non-humain a été observée dans des astrocytes périvasculaires, comparable à l'observation faite dans le cerveau du rongeur. Contrairement à ce qui a été décrit chez le rongeur, l'AQPI chez le primate est exprimée dans les processus et dans les prolongations périvasculaires d'un sous-type d'astrocytes, qui est avant tout localisé dans la matière blanche et dans la glia limitans et qui est peut-être impliqué dans l'homéostasie de l'eau. L'AQPI a aussi été observée dans les neurones qui innervent des vaisseaux sanguins de la pie-mère, suggérant un rôle possible dans la régularisation de la vascularisation cérébrale. Comme décrit chez le rongeur, le mRNA et les protéines de l'AQP9 ont été détectés dans des astrocytes et dans des neurones catécholaminergiques. Chez le primate, des localisations supplémentaires ont été observées dans des populations de neurones placées dans certaines zones corticales. Cet article décrit une étude détaillée sur la distribution des AQP1, 4 et 9 dans le cerveau primate non-humain. Les observations faites s'additionnent aux data déjà publié sur le cerveau du rongeur. Ces importantes différences entre les espèces doivent être considérées dans l'évaluation des médicaments qui agiront potentiellement sur des AQP des primates non-humains avant d'entrer dans la phase des essais cliniques sur des humains.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder resulting from polyglutamine expansion in the huntingtin (HTT) protein and for which there is no cure. Although suppression of both wild type and mutant HTT expression by RNA interference is a promising therapeutic strategy, a selective silencing of mutant HTT represents the safest approach preserving WT HTT expression and functions. We developed small hairpin RNAs (shRNAs) targeting single nucleotide polymorphisms (SNP) present in the HTT gene to selectively target the disease HTT isoform. Most of these shRNAs silenced, efficiently and selectively, mutant HTT in vitro. Lentiviral-mediated infection with the shRNAs led to selective degradation of mutant HTT mRNA and prevented the apparition of neuropathology in HD rat's striatum expressing mutant HTT containing the various SNPs. In transgenic BACHD mice, the mutant HTT allele was also silenced by this approach, further demonstrating the potential for allele-specific silencing. Finally, the allele-specific silencing of mutant HTT in human embryonic stem cells was accompanied by functional recovery of the vesicular transport of BDNF along microtubules. These findings provide evidence of the therapeutic potential of allele-specific RNA interference for HD.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Electrical Impedance Tomography (EIT) is an imaging method which enables a volume conductivity map of a subject to be produced from multiple impedance measurements. It has the potential to become a portable non-invasive imaging technique of particular use in imaging brain function. Accurate numerical forward models may be used to improve image reconstruction but, until now, have employed an assumption of isotropic tissue conductivity. This may be expected to introduce inaccuracy, as body tissues, especially those such as white matter and the skull in head imaging, are highly anisotropic. The purpose of this study was, for the first time, to develop a method for incorporating anisotropy in a forward numerical model for EIT of the head and assess the resulting improvement in image quality in the case of linear reconstruction of one example of the human head. A realistic Finite Element Model (FEM) of an adult human head with segments for the scalp, skull, CSF, and brain was produced from a structural MRI. Anisotropy of the brain was estimated from a diffusion tensor-MRI of the same subject and anisotropy of the skull was approximated from the structural information. A method for incorporation of anisotropy in the forward model and its use in image reconstruction was produced. The improvement in reconstructed image quality was assessed in computer simulation by producing forward data, and then linear reconstruction using a sensitivity matrix approach. The mean boundary data difference between anisotropic and isotropic forward models for a reference conductivity was 50%. Use of the correct anisotropic FEM in image reconstruction, as opposed to an isotropic one, corrected an error of 24 mm in imaging a 10% conductivity decrease located in the hippocampus, improved localisation for conductivity changes deep in the brain and due to epilepsy by 4-17 mm, and, overall, led to a substantial improvement on image quality. This suggests that incorporation of anisotropy in numerical models used for image reconstruction is likely to improve EIT image quality.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Several psychiatric disorders have been associated with CpG methylation changes in CG rich promoters of the brain-derived neurotrophic factor (BDNF) mainly by extracting DNA from peripheral blood cells. Whether changes in peripheral DNA methylation can be used as a proxy for brain-specific alterations remains an open question. In this study we aimed to compare DNA methylation levels in BDNF promoter regions in human blood cells, muscle and brain regions using bisulfite-pyrosequencing. We found a significant correlation between the levels of BDNF promoter I methylation measured in quadriceps and vPFC tissues extracted from the same individuals (n = 98, Pearson, r = 0.48, p = 4.5 × 10(-7)). In the hippocampus, BDNF promoter I and IV methylation levels were strongly correlated (Pearson, n = 37, r = 0.74, p = 1.4 × 10(-7)). We found evidence for sex-dependent effect on BDNF promoter methylation levels in the various tissues and blood samples. Taken together, these data indicate a strong intra-individual correlation between peripheral and brain tissue. They also suggest that sex determines methylation patterns in BDNF promoter region across different types of tissue, including muscle, brain, and blood.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

What we put into our mouths can nourish or kill us. A new study uses state-of-the-art electroencephalogram decoding to detail how we and our brains know what we taste.