234 resultados para OSTEOCLAST-LIKE CELLS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Toll-like receptors (TLR) recognize pathogen associated molecular patterns, and the binding of their specific ligands triggers a proinflammatory response that helps to fight invading microorganisms, and can be harnessed to increase vaccine efficiency. The present study demonstrates that double-stranded RNA is a promising vaccine adjuvant able to increase both proliferation and activation of antigen-specific CD8(+) T cells. Importantly, TLR3 is required for this adjuvant effect, as TLR3 deficient recipients failed to enhance proliferation of adoptively transferred TCR transgenic CD8(+) T cells in the presence of double-stranded RNA. Finally, this study also shows that, in contrast to previous reports in humans, TLR3 does not exert direct costimulatory activity on CD8(+) T cells in mice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lymphocyte homeostasis is regulated by mechanisms that control lymphocyte proliferation and apoptosis. Activation-induced cell death is mediated by the expression of death ligands and receptors, which, when triggered, activate an apoptotic cascade. Bovine T cells transformed by the intracellular parasite Theileria parva proliferate in an uncontrolled manner and undergo clonal expansion. They constitutively express the death receptor Fas and its ligand, FasL but do not undergo apoptosis. Upon elimination of the parasite from the host cell by treatment with a theilericidal drug, cells become increasingly sensitive to Fas/FasL-induced apoptosis. In normal T cells, the sensitivity to death receptor killing is regulated by specific inhibitor proteins. We found that anti-apoptotic proteins such as cellular (c)-FLIP, which functions as a catalytically inactive form of caspase-8, and X-chromosome-linked inhibitor of apoptosis protein (IAP) as well as c-IAP, which can block downstream executioner caspases, are constitutively expressed in T. parva-transformed T cells. Expression of these proteins is rapidly down-regulated upon parasite elimination. Antiapoptotic proteins of the Bcl-2 family such as Bcl-2 and Bcl-x(L) are also expressed but, in contrast to c-FLIP, c-IAP, and X-chromosome-linked IAP, do not appear to be tightly regulated by the presence of the parasite. Finally, we show that, in contrast to the situation in tumor cells, the phosphoinositide 3-kinase/Akt pathway is not essential for c-FLIP expression. Our findings indicate that by inducing the expression of antiapoptotic proteins, T. parva allows the host cell to escape destruction by homeostatic mechanisms that would normally be activated to limit the continuous expansion of a T cell population.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract: Protective immune responses against pathogen invasion and transformed cells requires the coordinated action of distinct leukocyte subsets and soluble factors, overall termed immunological network. Among antigen-presenting cells (APC), a crucial role is played by dendritic cells (DC), which initiate, amplify and determine the outcome of the immune response. Micro-environmental conditions profoundly influence DC in such ways that the resulting immune response ranges from successful immune stimulation to abortive response or immune suppression. For instance, the presence in the milieu of anti-inflammatory cytokine interleukin-10 (IL-10) reverts most of the effects mediated on DC by even strong pro-inflammatory agents such as bacterial Lipopolysaccharide (LPS), in terms of differentiation, activation and functions. In an environment containing both LPS and IL-10, uncoupling of receptors for inflammatory chemokines already occurs after a few hours and in a reversible manner on DC, allowing scavenging of chemokines and, consequently, attenuation of the inflammatory process which could be deleterious to the organism. By studying the effects on DC of concomitant stimulation by LPS and IL-10 from the gene expression point of view, we were able to define four distinct transcriptional programs: A. the inhibition of inflammation and immunity, B. the regulation of tissue remodeling, C. the tuning of cytokine/growth factor receptors and G protein-coupled receptors, D. the stimulation of B cell function and lymphoid tissue neogenesis. Among the latter genes, we further demonstrated that IL-10 synergizes with Toll-like receptor ligands for the production of functionally active B cell attracting chemokine CXCL13. Our data provide evidence that the combined exposure of APC to LPS and IL-10, via the production of CXCL13, involves humoral immunity by attracting antibody-producing cells. It is well known that the persistent release of CXCL13 leads to the development of ectopic lymphoid tissue aggregates and production of high levels of antibodies, thus favoring the induction of auto-immunity. Our findings suggest that the IL-10 produced in chronic inflammatory conditions may promote lymphoid tissue neogenesis through increased release of CXCL13. IL-10 is an anti-inflammatory cytokine inhibiting cellular-mediated TH 1-polarized immune responses. In this study we demonstrate that IL- 10 strongly supports the development of humoral immunity. IL-10 and CXCL13 can thus be targets for specific therapies in auto-immune diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glucagon-like peptide-1 (GLP-1) is the most potent stimulator of glucose-induced insulin secretion and its pancreatic beta-cell receptor is a member of a new subfamily of G-protein-coupled receptors which includes the receptors for vasoactive intestinal polypeptide, secretin and glucagon. Here we studied agonist-induced GLP-1 receptor internalization in receptor-transfected Chinese hamster lung fibroblasts using three different approaches. First, iodinated GLP-1 bound at 4 degrees C to transfected cells was internalized with a t 1/2 of 2-3 min following warming up of the cells to 37 degrees C. Secondly, exposure to GLP-1 induced a shift in the distribution of the receptors from plasma membrane-enriched to endosomes-enriched membrane fractions, as assessed by Western blot detection of the receptors using specific antibodies. Thirdly, continuous exposure of GLP-1 receptor-expressing cells to iodinated GLP-1 led to a linear accumulation of peptide degradation products in the medium following a lag time of 20-30 min, indicating a continuous cycling of the receptor between the plasma membrane and endosomal compartments. Potassium depletion and hypertonicity inhibited transferrin endocytosis, a process known to occur via coated pit formation, as well as GLP-1 receptor endocytosis. In contrast to GLP-1, the antagonist exendin-(9-39) did not lead to receptor endocytosis. Surface re-expression following one round of GLP-1 receptor endocytosis occurred with a half-time of about 15 min. The difference in internalization and surface re-expression rates led to a progressive redistribution of the receptor in intracellular compartments upon continuous exposure to GLP-1. Finally, endogenous GLP-1 receptors expressed by insulinoma cells were also found to be internalized upon agonist binding. Together our data demonstrate that the GLP-1 receptor is internalized upon agonist binding by a route similar to that taken by single transmembrane segment receptors. The characterization of the pathway and kinetics of GLP-1-induced receptor endocytosis will be helpful towards understanding the role of internalization and recycling in the control of signal transduction by this receptor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inhibitory MHC receptors determine the reactivity and specificity of NK cells. These receptors can also regulate T cells by modulating TCR-induced effector functions such as cytotoxicity, cytokine production, and proliferation. Here we have assessed the capacity of mouse T cells expressing the inhibitory MHC class I receptor Ly49A to respond to a well-defined tumor Ag in vivo using Ly49A transgenic mice. We find that the presence of Ly49A on the vast majority of lymphocytes prevents the development of a significant Ag-specific CD8+ T cell response and, consequently, the rejection of the tumor. Despite minor alterations in the TCR repertoire of CD8+ T cells in the transgenic lines, precursors of functional tumor-specific CD8+ T cells exist but could not be activated most likely due to a lack of appropriate CD4+ T cell help. Surprisingly, all of these effects are observed in the absence of a known ligand for the Ly49A receptor as defined by its ability to regulate NK cell function. Indeed, we found that the above effects on T cells may be based on a weak interaction of Ly49A with Kb or Db class I molecules. Thus, our data demonstrate that enforced expression of a Ly49A receptor on conventional T cells prevents a specific immune response in vivo and suggest that the functions of T and NK cells are differentially sensitive to the presence of inhibitory MHC class I receptors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Ly49 natural killer (NK)-cell receptor family comprises both activating and inhibitory members, which recognize major histocompatibility complex (MHC) class I or MHC class I-related molecules and are involved in target recognition. As previously shown, the Ly49E receptor fails to bind to a variety of soluble or cell-bound MHC class I molecules, indicating that its ligand is not an MHC class I molecule. Using BWZ.36 reporter cells, we demonstrate triggering of Ly49E by the completely distinct, non-MHC-related protein urokinase plasminogen activator (uPA). uPA is known to be secreted by a variety of cells, including epithelial and hematopoietic cells, and levels are up-regulated during tissue remodeling, infections, and tumorigenesis. Here we show that addition of uPA to Ly49E-positive adult and fetal NK cells inhibits interferon-gamma secretion and reduces their cytotoxic potential, respectively. These uPA-mediated effects are Ly49E-dependent, as they are reversed by addition of anti-Ly49E monoclonal antibody and by down-regulation of Ly49E expression using RNA interference. Our results suggest that uPA, besides its established role in fibrinolysis, tissue remodeling, and tumor metastasis, could be involved in NK cell-mediated immune surveillance and tumor escape.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Brain-derived neurotrophic factor (BDNF) is a protein capable of supporting the survival and fiber outgrowth of peripheral sensory neurons. It has been argued that histological detection of BDNF has proven difficult because of its low molecular weight and relatively low expression. In the present study we report that rapid removal of dorsal root ganglia (DRG) from the rat, followed by rapid freezing and appropriate fixation with cold acetone, preserves BDNF in situ without altering protein antigenicity. Under these conditions, specific BDNF-like immunoreactivity was detected in DRG both in vivo and in vitro. During DRG development in vivo, BDNF-like immunoreactivity (BDNF-LI) was observed only in a subset of sensory neurons. BDNF-LI was confined to small neurons, after neurons became morphologically distinct on the basis of size. BDNF-L immunoprecipitate was detected only in neuronal cells, and not in satellite or Schwann cells. While in vivo BDNF localization was restricted to small neurons, practically all neurons in DRG cell culture displayed BDNF-LI. Small or large primary afferent neurons exhibited a faint but clear BDNF-LI during the whole life span of cultures. Again, non-neuronal cells were devoid of BDNF-LI. In conclusion, in DRG in vivo, specific BDNF-LI was confined to small B sensory neurons. In contrast, all DRG sensory neurons displayed BDNF-LI in vitro. The finding that BDNF expressed in all DRG neurons in vitro but not in vivo suggests that BDNF expression may be modulated by environmental factors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Natural killer T (NKT) cells express a T cell receptor (TCR) and markers common to NK cells, including NK1.1. In vivo, NKT cells are triggered by anti-CD3epsilon MAb to rapidly produce large amounts of IL-4 and by IL-12 to reject tumors. We show here that anti-CD3epsilon MAb treatment rapidly depletes the liver (and partially the spleen) of NKT cells and that homeostasis is achieved 1 to 2 days later via NKT cell proliferation that occurs mainly in bone marrow. Similar results were obtained in mice treated with IL-12. Collectively, our data demonstrate that peripheral NKT cells are highly sensitive to activation-induced cell death and that bone marrow plays a major role in restoring NKT cell homeostasis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

α-dystroglycan is a highly O-glycosylated extracellular matrix receptor that is required for anchoring of the basement membrane to the cell surface and for the entry of Old World arenaviruses into cells. Like-acetylglucosaminyltransferase (LARGE) is a key molecule that binds to the N-terminal domain of α-dystroglycan and attaches ligand-binding moieties to phosphorylated O-mannose on α-dystroglycan. Here we show that the LARGE modification required for laminin- and virus-binding occurs on specific Thr residues located at the extreme N terminus of the mucin-like domain of α-dystroglycan. Deletion and mutation analyses demonstrate that the ligand-binding activity of α-dystroglycan is conferred primarily by LARGE modification at Thr-317 and -319, within the highly conserved first 18 amino acids of the mucin-like domain. The importance of these paired residues in laminin-binding and clustering activity on myoblasts and in arenavirus cell entry is confirmed by mutational analysis with full-length dystroglycan. We further demonstrate that a sequence of five amino acids, Thr(317)ProThr(319)ProVal, contains phosphorylated O-glycosylation and, when modified by LARGE is sufficient for laminin-binding. Because the N-terminal region adjacent to the paired Thr residues is removed during posttranslational maturation of dystroglycan, our results demonstrate that the ligand-binding activity resides at the extreme N terminus of mature α-dystroglycan and is crucial for α-dystroglycan to coordinate the assembly of extracellular matrix proteins and to bind arenaviruses on the cell surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tumors are often compared to wounds that do not heal, where the crosstalk between tumor cells and their surrounding stroma is crucial at all stages of development, from the initial primary growth to metastasis. Similar to wound healing, fibroblasts in the tumor stroma differentiate into myofibroblasts, also referred to as "cancer-associated fibroblasts" (CAFs), primarily, but not exclusively, in response to transforming growth factor-ß (TGF-ß). Myofibroblasts in turn enhance tumor progression by remodeling the stroma. Among molecules implicated in stroma remodeling, matrix metalloproteinases (MMPs), and MMP-g in particular, play a prominent role. However, the mechanisms that regulate MMP-g activation and function remain poorly understood. Recent evidence indicates that tumor cell surface association of MMP-g is an important event in its activation, and more generally in tumor growth and invasion. In the present work we address the potential association of MMP-g activity with cell-surface recruitment to human fibroblasts. We show for the first time that recruitment of MMP-g to the MRC-5 fibroblast cell surface occurs through the fibronectin-like (FN) domain, shared only by MMP-g and MMP-2 among all the MMPs. Functional assays suggest that both the pro- and active form of MMP-g trigger a-smooth muscle actin (aSMA) expression in resting fibroblasts that reflects myofibroblast differentiation, possibly through TGF-ß activation. Moreover, the FN domain of MMP-g inhibits both MMP-g-induced TGF-ß activation and aSMA expression by sequestering MMP-g. Xenograft experiments in NOD/SCID mice using HT1080 fibrosarcoma or MDA-MD231 breast adenocarcinoma cells stably expressing the FN domain of MMP-g revealed no changes in primary tumor growth. However, in the context of metastasis, expression of the FN domain by these same tumor cells dramatically increased their metastatic proclivity whereas expression of wt MMP-g either promoted no change or actually reduced the number of metastases. We observed a decrease of an active form of MMP-g in MDA-MB231 cells overexpressing the FN domain suggesting that the FN domain may inhibit MMP-g activity in Tumors are often compared to wounds that do not heal, where the crosstalk between tumor cells and their surrounding stroma is crucial at all stages of development, from the initial primary growth to metastasis. Similar to wound healing, fibroblasts in the tumor stroma differentiate into myofibroblasts, also referred to as "cancer-associated fibroblasts" (CAFs), primarily, but not exclusively, in response to transforming growth factor-ß (TGF-ß). Myofibroblasts in turn enhance tumor progression by remodeling the stroma. Among molecules implicated in stroma remodeling, matrix metalloproteinases (MMPs), and MMP-g in particular, play a prominent role. However, the mechanisms that regulate MMP-g activation and function remain poorly understood. Recent evidence indicates that tumor cell surface association of MMP-g is an important event in its activation, and more generally in tumor growth and invasion. In the present work we address the potential association of MMP-g activity with cell-surface recruitment to human fibroblasts. We show for the first time that recruitment of MMP-g to the MRC-5 fibroblast cell surface occurs through the fibronectin-like (FN) domain, shared only by MMP-g and MMP-2 among all the MMPs. Functional assays suggest that both the pro- and active form of MMP-g trigger a-smooth muscle actin (aSMA) expression in resting fibroblasts that reflects myofibroblast differentiation, possibly through TGF-ß activation. Moreover, the FN domain of MMP-g inhibits both MMP-g-induced TGF-ß activation and aSMA expression by sequestering MMP-g. Xenograft experiments in NOD/SCID mice using HT1080 fibrosarcoma or MDA-MD231 breast adenocarcinoma cells stably expressing the FN domain of MMP-9 revealed no changes in primary tumor growth. However, in the context of metastasis, expression of the FN domain by these same tumor cells dramatically increased their metastatic proclivity whereas expression of wt MMP-g either promoted no change or actually reduced the number of metastases. We observed a decrease of an active form of MMP-9 in MDA-MB231 cells overexpressing the FN domain suggesting that the FN domain may inhibit MMP-9 activity in those cells and therefore prevent MMP-9-induced activation of TGF-b, which results in increased invasion. Curiously, xenografts of SW480 colorectal adenocarcinoma cells stably expressing the FN domain of MMP-9 displayed reduced growth at both the primary (subcutaneous) injection site and the lungs of NOD/SCID mice, in experimental metastasis assays, whilst the same cells overexpressing wt MMP-9 showed enhanced growth and dissemination. Gelatin zymography of conditioned medium revealed that these effects may be due to the FN domain, which displaces MMP-9 from SW480 cell surface. These observations suggest a dual role of MMP-9 and its FN domain in primary tumor growth and metastasis, underscoring the notion that the effect of MMP-9 on tumor cells may depend on the cell type and highlighting possible protective effects of MMPs in tumor progression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neuroblastoma (NB) is the most common extracranial malignant tumor in young children and arises at any site of the sympathetic nervous system. The disease exhibits a remarkable phenotypic diversity ranging from spontaneous regression to fatal disease. Poor outcome results from a rapidly progressive, metastatic and drug-resistant disease. Recent studies have suggested that solid tumors may arise from a minor population of cancer stem cells (CSCs) with stem cell markers and typical properties such as self-renewal ability, asymmetric division and drug resistance. In this model, CSCs possess the exclusive ability to initiate and maintain the tumor, and to produce distant metastases. Tumor cell subpopulations with stem-like phenotypes have indeed been identified in several cancer including leukemia, breast, brain and colon cancers. CSC hypothesis still needs to be validated in the other cancers including NB.NB originates from neural crest-derived malignant sympatho-adrenal cells. We have identified rare cells that express markers in conformity with neural crest stem cells and their derived lineages within primary NB tissue and cell lines, leading us to postulate the existence of CSCs in NB tumors.In the absence of specific markers to isolate CSCs, we adapted to NB tumor cells the sphere functional assay, based on the ability of stem cells to grow as spheres in non-adherent conditions. By serial passages of spheres from bone marrow NB metastases, a subset of cells was gradually selected and its specific gene expression profile identified by micro-array time-course analysis. The differentially expressed genes in spheres are enriched in genes implicated in development including CD133, ABC-transporters, WNT and NOTCH genes, identified in others solid cancers as CSCs markers, and other new markers, all referred by us as the Neurosphere Expression Profile (NEP). We confirmed the presence of a cell subpopulation expressing a combination of the NEP markers within a few primary NB samples.The tumorigenic potential of NB spheres was assayed by in vivo tumor growth analyses using orthotopic (adrenal glands) implantations of tumor cells into immune-compromised mice. Tumors derived from the sphere cells were significantly more frequent and were detected earlier compared to whole tumor cells. However, NB cells expressing the neurosphere-associated genes and isolated from the bulk tumors did not recapitulate the CSC-like phenotype in the orthotopic model. In addition, the NB sphere cells lost their higher tumorigenic potential when implanted in a subcutaneous heterotopic in vivo model.These results highlighted the complex behavior of CSC functions and led us to consider the stem-like NB cells as a dynamic and heterogeneous cell population influenced by microenvironment signals.Our approach identified for the first time candidate genes that may be associated with NB self-renewal and tumorigenicity and therefore would establish specific functional targets for more effective therapies in aggressive NB.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

NK cell function is negatively regulated by MHC class I-specific inhibitory receptors. Transduction of the inhibitory signal involves protein tyrosine phosphatases such as SHP-1 (SH2-containing protein tyrosine phosphatase-1). To investigate the role of SHP-1 for NK cell development and function, we generated mice expressing a catalytically inactive, dominant-negative mutant of SHP-1 (dnSHP-1). In this paper we show that expression of dnSHP-1 does not affect the generation of NK cells even though MHC receptor-mediated inhibition is partially impaired. Despite this defect, these NK cells do not kill syngeneic, normal target cells. In fact dnSHP-1-expressing NK cells are hyporesponsive toward MHC-deficient target cells, suggesting that non-MHC-specific NK cell activation is significantly reduced. In contrast, these NK cells mediate Ab-dependent cell-mediated cytotoxicity and prevent the engraftment with beta2-microglobulin-deficient bone marrow cells. A similar NK cell phenotype is observed in viable motheaten (mev) mice, which show reduced SHP-1 activity due to a mutation in the Shp-1 gene. In addition, NK cells in both mouse strains show a tendency to express more inhibitory MHC-specific Ly49 receptors. Our results demonstrate the importance of SHP-1 for the generation of functional NK cells, which are able to react efficiently to the absence of MHC class I molecules from normal target cells. Therefore, SHP-1 may play an as-yet-unrecognized role in some NK cell activation pathways. Alternatively, a reduced capacity to transduce SHP-1-dependent inhibitory signals during NK cell development may be compensated by the down-modulation of NK cell triggering pathways.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In hair follicles, dermal papilla (DP) and dermal sheath (DS) cells exhibit striking levels of plasticity, as each can regenerate both cell types. Here, we show that thrombin induces a phosphoinositide 3-kinase (PI3K)-Akt pathway-dependent acquisition of DS-like properties by DP cells in vitro, involving increased proliferation rate, acquisition of ;myofibroblastic' contractile properties and a decreased capacity to sustain growth and survival of keratinocytes. The thrombin inhibitor protease nexin 1 [PN-1, also known as SERPINE2) regulates all those effects in vitro. Accordingly, the PI3K-Akt pathway is constitutively activated and expression of myofibroblastic marker smooth-muscle actin is enhanced in vivo in hair follicle dermal cells from PN-1(-/-) mice. Furthermore, physiological PN-1 disappearance and upregulation of the thrombin receptor PAR-1 (also known as F2R) during follicular regression in wild-type mice also correlate with such changes in DP cell characteristics. Our results indicate that control of thrombin signaling interferes with hair follicle dermal cells plasticity to regulate their function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nucleotide-binding oligomerization domain-like receptors (NLRs) are intracellular proteins involved in innate-driven inflammatory responses. The function of the family member NLR caspase recruitment domain containing protein 5 (NLRC5) remains a matter of debate, particularly with respect to NF-κB activation, type I IFN, and MHC I expression. To address the role of NLRC5, we generated Nlrc5-deficient mice (Nlrc5(Δ/Δ)). In this article we show that these animals exhibit slightly decreased CD8(+) T cell percentages, a phenotype compatible with deregulated MHC I expression. Of interest, NLRC5 ablation only mildly affected MHC I expression on APCs and, accordingly, Nlrc5(Δ/Δ) macrophages efficiently primed CD8(+) T cells. In contrast, NLRC5 deficiency dramatically impaired basal expression of MHC I in T, NKT, and NK lymphocytes. NLRC5 was sufficient to induce MHC I expression in a human lymphoid cell line, requiring both caspase recruitment and LRR domains. Moreover, endogenous NLRC5 localized to the nucleus and occupied the proximal promoter region of H-2 genes. Consistent with downregulated MHC I expression, the elimination of Nlrc5(Δ/Δ) lymphocytes by cytotoxic T cells was markedly reduced and, in addition, we observed low NLRC5 expression in several murine and human lymphoid-derived tumor cell lines. Hence, loss of NLRC5 expression represents an advantage for evading CD8(+) T cell-mediated elimination by downmodulation of MHC I levels-a mechanism that may be exploited by transformed cells. Our data show that NLRC5 acts as a key transcriptional regulator of MHC I in lymphocytes and support an essential role for NLRs in directing not only innate but also adaptive immune responses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Regulated by histone acetyltransferases and deacetylases (HDACs), histone acetylation is a key epigenetic mechanism controlling chromatin structure, DNA accessibility, and gene expression. HDAC inhibitors induce growth arrest, differentiation, and apoptosis of tumor cells and are used as anticancer agents. Here we describe the effects of HDAC inhibitors on microbial sensing by macrophages and dendritic cells in vitro and host defenses against infection in vivo. HDAC inhibitors down-regulated the expression of numerous host defense genes, including pattern recognition receptors, kinases, transcription regulators, cytokines, chemokines, growth factors, and costimulatory molecules as assessed by genome-wide microarray analyses or innate immune responses of macrophages and dendritic cells stimulated with Toll-like receptor agonists. HDAC inhibitors induced the expression of Mi-2β and enhanced the DNA-binding activity of the Mi-2/NuRD complex that acts as a transcriptional repressor of macrophage cytokine production. In vivo, HDAC inhibitors increased the susceptibility to bacterial and fungal infections but conferred protection against toxic and septic shock. Thus, these data identify an essential role for HDAC inhibitors in the regulation of the expression of innate immune genes and host defenses against microbial pathogens.