311 resultados para Electronic tools
Resumo:
The MyHits web site (http://myhits.isb-sib.ch) is an integrated service dedicated to the analysis of protein sequences. Since its first description in 2004, both the user interface and the back end of the server were improved. A number of tools (e.g. MAFFT, Jacop, Dotlet, Jalview, ESTScan) were added or updated to improve the usability of the service. The MySQL schema and its associated API were revamped and the database engine (HitKeeper) was separated from the web interface. This paper summarizes the current status of the server, with an emphasis on the new services.
Resumo:
Rupture of unstable plaques may lead to myocardial infarction or stroke and is the leading cause of morbidity and mortality in western countries. Thus, there is a clear need for identifying these vulnerable plaques before the rupture occurs. Atherosclerotic plaques are a challenging imaging target as they are small and move rapidly, especially in the coronary tree. Many of the currently available imaging tools for clinical use still provide minimal information about the biological characteristics of plaques, because they are limited with respect to spatial and temporal resolution. Moreover, many of these imaging tools are invasive. The new generation of imaging modalities such as magnetic resonance imaging, nuclear imaging such as positron emission tomography and single photon emission computed tomography, computed tomography, fluorescence imaging, intravascular ultrasound, and optical coherence tomography offer opportunities to overcome some of these limitations. This review discusses the potential of these techniques for imaging the unstable plaque.
Resumo:
BACKGROUND AND PURPOSE: Stroke registries are valuable tools for obtaining information about stroke epidemiology and management. The Acute STroke Registry and Analysis of Lausanne (ASTRAL) prospectively collects epidemiological, clinical, laboratory and multimodal brain imaging data of acute ischemic stroke patients in the Centre Hospitalier Universitaire Vaudois (CHUV). Here, we provide design and methods used to create ASTRAL and present baseline data of our patients (2003 to 2008). METHODS: All consecutive patients admitted to CHUV between January 1, 2003 and December 31, 2008 with acute ischemic stroke within 24 hours of symptom onset were included in ASTRAL. Patients arriving beyond 24 hours, with transient ischemic attack, intracerebral hemorrhage, subarachnoidal hemorrhage, or cerebral sinus venous thrombosis, were excluded. Recurrent ischemic strokes were registered as new events. RESULTS: Between 2003 and 2008, 1633 patients and 1742 events were registered in ASTRAL. There was a preponderance of males, even in the elderly. Cardioembolic stroke was the most frequent type of stroke. Most strokes were of minor severity (National Institute of Health Stroke Scale [NIHSS] score ≤ 4 in 40.8% of patients). Cardioembolic stroke and dissections presented with the most severe clinical picture. There was a significant number of patients with unknown onset stroke, including wake-up stroke (n=568, 33.1%). Median time from last-well time to hospital arrival was 142 minutes for known onset and 759 minutes for unknown-onset stroke. The rate of intravenous or intraarterial thrombolysis between 2003 and 2008 increased from 10.8% to 20.8% in patients admitted within 24 hours of last-well time. Acute brain imaging was performed in 1695 patients (97.3%) within 24 hours. In 1358 patients (78%) who underwent acute computed tomography angiography, 717 patients (52.8%) had significant abnormalities. Of the 1068 supratentorial stroke patients who underwent acute perfusion computed tomography (61.3%), focal hypoperfusion was demonstrated in 786 patients (73.6%). CONCLUSIONS: This hospital-based prospective registry of consecutive acute ischemic strokes incorporates demographic, clinical, metabolic, acute perfusion, and arterial imaging. It is characterized by a high proportion of minor and unknown-onset strokes, short onset-to-admission time for known-onset patients, rapidly increasing thrombolysis rates, and significant vascular and perfusion imaging abnormalities in the majority of patients.
Resumo:
The TGF-β homolog Decapentaplegic (Dpp) acts as a secreted morphogen in the Drosophila wing disc, and spreads through the target tissue in order to form a long range concentration gradient. Despite extensive studies, the mechanism by which the Dpp gradient is formed remains controversial. Two opposing mechanisms have been proposed: receptor-mediated transcytosis (RMT) and restricted extracellular diffusion (RED). In these scenarios the receptor for Dpp plays different roles. In the RMT model it is essential for endocytosis, re-secretion, and thus transport of Dpp, whereas in the RED model it merely modulates Dpp distribution by binding it at the cell surface for internalization and subsequent degradation. Here we analyzed the effect of receptor mutant clones on the Dpp profile in quantitative mathematical models representing transport by either RMT or RED. We then, using novel genetic tools, experimentally monitored the actual Dpp gradient in wing discs containing receptor gain-of-function and loss-of-function clones. Gain-of-function clones reveal that Dpp binds in vivo strongly to the type I receptor Thick veins, but not to the type II receptor Punt. Importantly, results with the loss-of-function clones then refute the RMT model for Dpp gradient formation, while supporting the RED model in which the majority of Dpp is not bound to Thick veins. Together our results show that receptor-mediated transcytosis cannot account for Dpp gradient formation, and support restricted extracellular diffusion as the main mechanism for Dpp dispersal. The properties of this mechanism, in which only a minority of Dpp is receptor-bound, may facilitate long-range distribution.
Resumo:
BACKGROUND: Teaching of evidence-based medicine (EBM) has become widespread in medical education. Teaching the teachers (TTT) courses address the increased teaching demand and the need to improve effectiveness of EBM teaching. We conducted a systematic review of assessment tools for EBM TTT courses.To summarise and appraise existing assessment methods for teaching the teachers courses in EBM by a systematic review. METHODS: We searched PubMed, BioMed, EmBase, Cochrane and Eric databases without language restrictions and included articles that assessed its participants. Study selection and data extraction were conducted independently by two reviewers. RESULTS: Of 1230 potentially relevant studies, five papers met the selection criteria. There were no specific assessment tools for evaluating effectiveness of EBM TTT courses. Some of the material available might be useful in initiating the development of such an assessment tool. CONCLUSION: There is a need for the development of educationally sound assessment tools for teaching the teachers courses in EBM, without which it would be impossible to ascertain if such courses have the desired effect.
Resumo:
OBJECTIVES: To investigate opinions' convergences and divergences of diabetic patients and health-care professionals on diabetes care and the development of a regional diabetes programme. BACKGROUND: Development and implementation of a regional diabetes programme. RESEARCH DESIGN: Qualitative study using focus groups to elicit diabetic patients' and health-care professionals' opinions, followed by content analysis. SETTING AND PARTICIPANTS: Eight focus groups: four focus groups with diabetic patients (n = 39) and four focus groups with various health-care professionals (n = 34) residing or practicing in the canton of Vaud, Switzerland, respectively. RESULTS: Perceived quality of diabetes care varied between individuals and types of participants. To improve quality, patients favoured a comprehensive follow-up while professionals suggested considering existing structures and trained professionals. All participants mentioned communication difficulties between professionals and were favouring teamwork. In addition, they described the role that patients should have in care and self-management. Financial difficulties were also mentioned by both groups of participants. Finally, they were in favour of the development of a regional diabetes programme adapted to actors' needs. For patients indeed, such a programme would represent an opportunity to improve information and to have access to comprehensive care. For professionals, it would help the development of local networks and the reinforcement of existing tools and structures. DISCUSSION AND CONCLUSIONS: Acknowledging convergences and divergences of opinions of both diabetic patients and health-care professionals should help the further development of a programme adapted to users' needs, taking all stakeholders interests and priorities into consideration.
Resumo:
SUMMARY: Research into the evolution of subdivided plant populations has long involved the study of phenotypic variation across plant geographic ranges and the genetic details underlying that variation. Genetic polymorphism at different marker loci has also allowed us to infer the long- and short-term histories of gene flow within and among populations, including range expansions and colonization-extinction dynamics. However, the advent of affordable genome-wide sequences for large numbers of individuals is opening up new possibilities for the study of subdivided populations. In this review, we consider what the new tools and technologies may allow us to do. In particular, we encourage researchers to look beyond the description of variation and to use genomic tools to address new hypotheses, or old ones afresh. Because subdivided plant populations are complex structures, we caution researchers away from adopting simplistic interpretations of their data, and to consider the patterns they observe in terms of the population genetic processes that have given rise to them; here, the genealogical framework of the coalescent will continue to be conceptually and analytically useful.
Resumo:
Since the advent of high-throughput DNA sequencing technologies, the ever-increasing rate at which genomes have been published has generated new challenges notably at the level of genome annotation. Even if gene predictors and annotation softwares are more and more efficient, the ultimate validation is still in the observation of predicted gene product( s). Mass-spectrometry based proteomics provides the necessary high throughput technology to show evidences of protein presence and, from the identified sequences, confirmation or invalidation of predicted annotations. We review here different strategies used to perform a MS-based proteogenomics experiment with a bottom-up approach. We start from the strengths and weaknesses of the different database construction strategies, based on different genomic information (whole genome, ORF, cDNA, EST or RNA-Seq data), which are then used for matching mass spectra to peptides and proteins. We also review the important points to be considered for a correct statistical assessment of the peptide identifications. Finally, we provide references for tools used to map and visualize the peptide identifications back to the original genomic information.
Resumo:
We describe an original case of disseminated infection with Histoplasma capsulatum (Hc) var. duboisii in an African patient with AIDS who migrated to Switzerland. The diagnosis of histoplasmosis was suggested using direct examination of tissues and confirmed in 24 h with a panfungal polymerase chain reaction assay. The variety duboisii of Hc was established using DNA sequencing of the polymorphic genomic region OLE. Molecular tools allow diagnosis of histoplasmosis in 24 h, which is drastically shorter than culture procedures.
Resumo:
MHC-peptide tetramers have become essential tools for T-cell analysis, but few MHC class II tetramers incorporating peptides from human tumor and self-antigens have been developed. Among limiting factors are the high polymorphism of class II molecules and the low binding capacity of the peptides. Here, we report the generation of molecularly defined tetramers using His-tagged peptides and isolation of folded MHC/peptide monomers by affinity purification. Using this strategy we generated tetramers of DR52b (DRB3*0202), an allele expressed by approximately half of Caucasians, incorporating an epitope from the tumor antigen NY-ESO-1. Molecularly defined tetramers avidly and stably bound to specific CD4(+) T cells with negligible background on nonspecific cells. Using molecularly defined DR52b/NY-ESO-1 tetramers, we could demonstrate that in DR52b(+) cancer patients immunized with a recombinant NY-ESO-1 vaccine, vaccine-induced tetramer-positive cells represent ex vivo in average 1:5,000 circulating CD4(+) T cells, include central and transitional memory polyfunctional populations, and do not include CD4(+)CD25(+)CD127(-) regulatory T cells. This approach may significantly accelerate the development of reliable MHC class II tetramers to monitor immune responses to tumor and self-antigens.
Resumo:
BACKGROUND: Although spirituality is usually considered a positive resource for coping with illness, spiritual distress may have a negative influence on health outcomes. Tools are needed to identify spiritual distress in clinical practice and subsequently address identified needs. This study describes the first steps in the development of a clinically acceptable instrument to assess spiritual distress in hospitalized elderly patients. METHODS: A three-step process was used to develop the Spiritual Distress Assessment Tool (SDAT): 1) Conceptualisation by a multidisciplinary group of a model (Spiritual Needs Model) to define the different dimensions characterizing a patient's spirituality and their corresponding needs; 2) Operationalisation of the Spiritual Needs Model within geriatric hospital care leading to a set of questions (SDAT) investigating needs related to each of the defined dimensions; 3) Qualitative assessment of the instrument's acceptability and face validity in hospital chaplains. RESULTS: Four dimensions of spirituality (Meaning, Transcendence, Values, and Psychosocial Identity) and their corresponding needs were defined. A formalised assessment procedure to both identify and subsequently score unmet spiritual needs and spiritual distress was developed. Face validity and acceptability in clinical practice were confirmed by chaplains involved in the focus groups. CONCLUSIONS: The SDAT appears to be a clinically acceptable instrument to assess spiritual distress in elderly hospitalised persons. Studies are ongoing to investigate the psychometric properties of the instrument and to assess its potential to serve as a basis for integrating the spiritual dimension in the patient's plan of care.
Resumo:
Mouse models are important tools to decipher the molecular mechanisms of mammary carcinogenesis and to mimic the respective human disease. Despite sharing common phenotypic and genetic features, the proper translation of murine models to human breast cancer remains a challenging task. In a previous study we showed that in the SV40 transgenic WAP-T mice an active Met-pathway and epithelial-mesenchymal characteristics distinguish low- and high-grade mammary carcinoma. To assign these murine tumors to corresponding human tumors we here incorporated the analysis of expression of transcription factor (TF) coding genes and show that thereby a more accurate interspecies translation can be achieved. We describe a novel cross-species translation procedure and demonstrate that expression of unsupervised selected TFs, such as ELF5, HOXA5 and TFCP2L1, can clearly distinguish between the human molecular breast cancer subtypes-or as, for example, expression of TFAP2B between yet unclassified subgroups. By integrating different levels of information like histology, gene set enrichment, expression of differentiation markers and TFs we conclude that tumors in WAP-T mice exhibit similarities to both, human basal-like and non-basal-like subtypes. We furthermore suggest that the low- and high-grade WAP-T tumor phenotypes might arise from distinct cells of tumor origin. Our results underscore the importance of TFs as common cross-species denominators in the regulatory networks underlying mammary carcinogenesis.
Resumo:
The kidney is a key organ in the maintenance of ion and fluid homeostasis and specific transport systems localized along the nephron guarantee this function. Due to its large functional heterogeneity, experiments on the whole organ level cannot be easily performed, and thus more refined tools are needed, like for example the development of specific recombination systems to gain knowledge on the physiological role of single proteins implicated in ion transport. This review introduces the transgenic technology developed over the past decades, and then focuses on recent strategies for generating kidney-specific gene targeting, over-expression, and gene ablation in mice, that will help to understand the physiological role of proteins implicated in salt and water balance in the kidney.
Resumo:
As the mortality associated with invasive Candida infections remains high, it is important to make optimal use of available diagnostic tools to initiate antifungal therapy as early as possible and to select the most appropriate antifungal drug. A panel of experts of the European Fungal Infection Study Group (EFISG) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) undertook a data review and compiled guidelines for the clinical utility and accuracy of different diagnostic tests and procedures for detection of Candida infections. Recommendations about the microbiological investigation and detection of candidaemia, invasive candidiasis, chronic disseminated candidiasis, and oropharyngeal, oesophageal, and vaginal candidiasis were included. In addition, remarks about antifungal susceptibility testing and therapeutic drug monitoring were made.
Resumo:
The n-octanol/water partition coefficient (log Po/w) is a key physicochemical parameter for drug discovery, design, and development. Here, we present a physics-based approach that shows a strong linear correlation between the computed solvation free energy in implicit solvents and the experimental log Po/w on a cleansed data set of more than 17,500 molecules. After internal validation by five-fold cross-validation and data randomization, the predictive power of the most interesting multiple linear model, based on two GB/SA parameters solely, was tested on two different external sets of molecules. On the Martel druglike test set, the predictive power of the best model (N = 706, r = 0.64, MAE = 1.18, and RMSE = 1.40) is similar to six well-established empirical methods. On the 17-drug test set, our model outperformed all compared empirical methodologies (N = 17, r = 0.94, MAE = 0.38, and RMSE = 0.52). The physical basis of our original GB/SA approach together with its predictive capacity, computational efficiency (1 to 2 s per molecule), and tridimensional molecular graphics capability lay the foundations for a promising predictor, the implicit log P method (iLOGP), to complement the portfolio of drug design tools developed and provided by the SIB Swiss Institute of Bioinformatics.