188 resultados para Identification of individuals
Resumo:
Acute and chronic respiratory failure is one of the major and potentially life-threatening features in individuals with myotonic dystrophy type 1 (DM1). Despite several clinical demonstrations showing respiratory problems in DM1 patients, the mechanisms are still not completely understood. This study was designed to investigate whether the DMSXL transgenic mouse model for DM1 exhibits respiratory disorders and, if so, to identify the pathological changes underlying these respiratory problems. Using pressure plethysmography, we assessed the breathing function in control mice and DMSXL mice generated after large expansions of the CTG repeat in successive generations of DM1 transgenic mice. Statistical analysis of breathing function measurements revealed a significant decrease in the most relevant respiratory parameters in DMSXL mice, indicating impaired respiratory function. Histological and morphometric analysis showed pathological changes in diaphragmatic muscle of DMSXL mice, characterized by an increase in the percentage of type I muscle fibers, the presence of central nuclei, partial denervation of end-plates (EPs) and a significant reduction in their size, shape complexity and density of acetylcholine receptors, all of which reflect a possible breakdown in communication between the diaphragmatic muscles fibers and the nerve terminals. Diaphragm muscle abnormalities were accompanied by an accumulation of mutant DMPK RNA foci in muscle fiber nuclei. Moreover, in DMSXL mice, the unmyelinated phrenic afferents are significantly lower. Also in these mice, significant neuronopathy was not detected in either cervical phrenic motor neurons or brainstem respiratory neurons. Because EPs are involved in the transmission of action potentials and the unmyelinated phrenic afferents exert a modulating influence on the respiratory drive, the pathological alterations affecting these structures might underlie the respiratory impairment detected in DMSXL mice. Understanding mechanisms of respiratory deficiency should guide pharmaceutical and clinical research towards better therapy for the respiratory deficits associated with DM1.
Resumo:
Complete achromatopsia is a rare autosomal recessive disease associated with CNGA3, CNGB3, GNAT2 and PDE6C mutations. This retinal disorder is characterized by complete loss of color discrimination due to the absence or alteration of the cones function. The purpose of the present study was the clinical and the genetic characterization of achromatopsia in a large consanguineous Tunisian family. Ophthalmic evaluation included a full clinical examination, color vision testing and electroretinography. Linkage analysis using microsatellite markers flanking CNGA3, CNGB3, GNAT2 and PDE6C genes was performed. Mutations were screened by direct sequencing. A total of 12 individuals were diagnosed with congenital complete achromatopsia. They are members of six nuclear consanguineous families belonging to the same large consanguineous family. Linkage analysis revealed linkage to GNAT2. Mutational screening of GNAT2 revealed three intronic variations c.119-69G>C, c.161+66A>T and c.875-31G>C that co-segregated with a novel mutation p.R313X. An identical GNAT2 haplotype segregating with this mutation was identified, indicating a founder mutation. All patients were homozygous for the p.R313X mutation. This is the first report of the clinical and genetic investigation of complete achromatopsia in North Africa and the largest family with recessive achromatopsia involving GNAT2; thus, providing a unique opportunity for genotype-phenotype correlation for this extremely rare condition.
Resumo:
The identification of genetically homogeneous groups of individuals is a long standing issue in population genetics. A recent Bayesian algorithm implemented in the software STRUCTURE allows the identification of such groups. However, the ability of this algorithm to detect the true number of clusters (K) in a sample of individuals when patterns of dispersal among populations are not homogeneous has not been tested. The goal of this study is to carry out such tests, using various dispersal scenarios from data generated with an individual-based model. We found that in most cases the estimated 'log probability of data' does not provide a correct estimation of the number of clusters, K. However, using an ad hoc statistic DeltaK based on the rate of change in the log probability of data between successive K values, we found that STRUCTURE accurately detects the uppermost hierarchical level of structure for the scenarios we tested. As might be expected, the results are sensitive to the type of genetic marker used (AFLP vs. microsatellite), the number of loci scored, the number of populations sampled, and the number of individuals typed in each sample.
Identification of Leishmania major cysteine proteinases as targets of the immune response in humans.
Resumo:
In this study, we report the identification of two parasite polypeptides recognized by human sera of patients infected with Leishmania major. Isolation and sequencing of the two genes encoding these polypeptides revealed that one of the genes is similar to the L. major cathepsin L-like gene family CPB, whereas the other gene codes for the L. major homologue of the cysteine proteinase a (CPA) of L. mexicana. By restriction enzyme digestion of genomic DNA, we show that the CPB gene is present in multiple copies in contrast to the cysteine proteinase CPA gene which could be unique. Specific antibodies directed against the mature regions of both types expressed in Escherichia coli were used to analyze the expression of these polypeptides in different stages of the parasite's life cycle. Polypeptides of 27 and 40 kDa in size, corresponding to CPA and CPB respectively, were detected at higher level in amastigotes than in stationary phase promastigotes. Purified recombinant CPs were also used to examine the presence of specific antibodies in sera from either recovered or active cases of cutaneous leishmaniasis patients. Unlike sera from healthy uninfected controls, all the sera reacted with recombinant CPA and CPB. This finding indicates that individuals having recovered from cutaneous leishmaniasis or with clinically apparent disease have humoral responses to cysteine proteinases demonstrating the importance of these proteinases as targets of the immune response and also their potential use for serodiagnosis.
Resumo:
OBJECTIVE: To identify the genetic causes underlying early-onset autosomal recessive retinitis pigmentosa (arRP) in the Spanish population and describe the associated phenotype. DESIGN: Case series. PARTICIPANTS: A total of 244 unrelated families affected by early-onset arRP. METHODS: Homozygosity mapping or exome sequencing analysis was performed in 3 families segregating arRP. A mutational screening was performed in 241 additional unrelated families for the p.Ser452Stop mutation. Haplotype analysis also was conducted. Individuals who were homozygotes, double heterozygotes, or carriers of mutations in RP1 underwent an ophthalmic evaluation to establish a genotype-phenotype correlation. MAIN OUTCOME MEASURES: DNA sequence variants, homozygous regions, haplotypes, best-corrected visual acuity, visual field assessments, electroretinogram responses, and optical coherence tomography images. RESULTS: Four novel mutations in RP1 were identified. The new mutation p.Ser542Stop was present in 11 of 244 (4.5%) of the studied families. All chromosomes harboring this mutation shared the same haplotype. All patients presented a common phenotype with an early age of onset and a prompt macular degeneration, whereas the heterozygote carriers did not show any signs of retinitis pigmentosa (RP). CONCLUSIONS: p.Ser542Stop is a single founder mutation and the most prevalent described mutation in the Spanish population. It causes early-onset RP with a rapid macular degeneration and is responsible for 4.5% of all cases. Our data suggest that the implication of RP1 in arRP may be underestimated. FINANCIAL DISCLOSURE(S): The author(s) have no proprietary or commercial interest in any materials discussed in this article.
Resumo:
Three sibling species of shrews, the common shrew (Sorex araneus), the Valais shrew (S. antinorii) and the Jersey shrew (S. coronatus) are morphologically similar. Different techniques based on karyorypes, morphology, biochemistry and genetic markers have been developed to identify individuals from these taxa. In this paper, we have used multiple microsatellite markers (L13, L14 and L99) to identify 55 dead animals coming from the Tarentaise Valley in France. As some individuals showed an unclear pattern with loci previously thought to be diagnostic (Lugon-Moulin et al. 2000), we have used morphologic measurements (Hausser et al. 1991) to confirm the status of these animals. This analysis clearly showed the limitations of the use of genetic diagnostic markers that have been designed in local populations and then applied to a wider scale. Even if these markers have great advantages over other techniques (i.e. simple to use and do not require samples from living animals), they should always be used with caution. There is always a risk of a locus not being diagnostic in the sampling region or in finding individuals with hybrid genotypes. Additional genetic markers should then be used, simultaneously with other identification techniques, to be sure of the status of the individuals.
Resumo:
Elevated resting heart rate is associated with greater risk of cardiovascular disease and mortality. In a 2-stage meta-analysis of genome-wide association studies in up to 181,171 individuals, we identified 14 new loci associated with heart rate and confirmed associations with all 7 previously established loci. Experimental downregulation of gene expression in Drosophila melanogaster and Danio rerio identified 20 genes at 11 loci that are relevant for heart rate regulation and highlight a role for genes involved in signal transmission, embryonic cardiac development and the pathophysiology of dilated cardiomyopathy, congenital heart failure and/or sudden cardiac death. In addition, genetic susceptibility to increased heart rate is associated with altered cardiac conduction and reduced risk of sick sinus syndrome, and both heart rate-increasing and heart rate-decreasing variants associate with risk of atrial fibrillation. Our findings provide fresh insights into the mechanisms regulating heart rate and identify new therapeutic targets.
Resumo:
The hallmark of social insects is their caste system: reproduction is primarily monopolized by queens, whereas workers specialize in the other tasks required for colony growth and survival. Pheromones produced by reining queens have long been believed to be the prime factor inhibiting the differentiation of new reproductive individuals. However, there has been very little progress in the chemical identification of such inhibitory pheromones. Here we report the identification of a volatile inhibitory pheromone produced by female neotenics (secondary queens) that acts directly on target individuals to suppress the differentiation of new female neotenics and identify n-butyl-n-butyrate and 2-methyl-1-butanol as the active components of the inhibitory pheromone. An artificial pheromone blend consisting of these two compounds had a strong inhibitory effect similar to live neotenics. Surprisingly, the same two volatiles are also emitted by eggs, playing a role both as an attractant to workers and an inhibitor of reproductive differentiation. This dual production of an inhibitory pheromone by female reproductives and eggs probably reflects the recruitment of an attractant pheromone as an inhibitory pheromone and may provide a mechanism ensuring honest signaling of reproductive status with a tight coupling between fertility and inhibitory power. Identification of a volatile pheromone regulating caste differentiation in a termite provides insights into the functioning of social insect colonies and opens important avenues for elucidating the developmental pathways leading to reproductive and nonreproductive castes.
Resumo:
A linkage between obesity-related phenotypes and the 2p21-23 locus has been reported previously. The urocortin (UCN) gene resides at this interval, and its protein decreases appetite behavior, suggesting that UCN may be a candidate gene for susceptibility to obesity. We localized the UCN gene by radiation hybrid mapping, and the surrounding markers were genotyped in a collection of French families. Evidence for linkage was shown between the marker D2S165 and leptin levels (LOD score, 1.34; P = 0.006) and between D2S2247 and the z-score of body mass index (LOD score, 1.829; P = 0.0019). The gene was screened for SNPs in 96 obese patients. Four new variants were established. Two single nucleotide polymorphisms were located in the promoter (-535 A-->G, -286 G-->A), one in intron 1 (+31 C-->G), and one in the 3'-untranslated region (+34 C-->T). Association studies in cohorts of 722 unrelated obese and 381 control subjects and transmission disequilibrium tests, performed for the two frequent promoter polymorphisms, in 120 families (894 individuals) showed that no association was present between these variants and obesity, obesity-related phenotypes, and diabetes. Thus, our analyses of the genetic variations of the UCN gene suggest that, at least in French Caucasians, they do not represent a major cause of obesity.
Resumo:
Inherited retinal dystrophies present extensive phenotypic and genetic heterogeneity, posing a challenge for patients' molecular and clinical diagnoses. In this study, we wanted to clinically characterize and investigate the molecular etiology of an atypical form of autosomal recessive retinal dystrophy in two consanguineous Spanish families. Affected members of the respective families exhibited an array of clinical features including reduced visual acuity, photophobia, defective color vision, reduced or absent ERG responses, macular atrophy and pigmentary deposits in the peripheral retina. Genetic investigation included autozygosity mapping coupled with exome sequencing in the first family, whereas autozygome-guided candidate gene screening was performed by means of Sanger DNA sequencing in the second family. Our approach revealed nucleotide changes in CDHR1; a homozygous missense variant (c.1720C > G, p.P574A) and a homozygous single base transition (c.1485 + 2T > C) affecting the canonical 5' splice site of intron 13, respectively. Both changes co-segregated with the disease and were absent among cohorts of unrelated control individuals. To date, only five mutations in CDHR1 have been identified, all resulting in premature stop codons leading to mRNA nonsense mediated decay. Our work reports two previously unidentified homozygous mutations in CDHR1 further expanding the mutational spectrum of this gene.
Resumo:
The fracture risk assessment tool (FRAX(®)) has been developed for the identification of individuals with high risk of fracture in whom treatment to prevent fractures would be appropriate. FRAX models are not yet available for all countries or ethnicities, but surrogate models can be used within regions with similar fracture risk. The International Society for Clinical Densitometry (ISCD) and International Osteoporosis Foundation (IOF) are nonprofit multidisciplinary international professional organizations. Their visions are to advance the awareness, education, prevention, and treatment of osteoporosis. In November 2010, the IOF/ISCD FRAX initiative was held in Bucharest, bringing together international experts to review and create evidence-based official positions guiding clinicians for the practical use of FRAX. A consensus meeting of the Asia-Pacific (AP) Panel of the ISCD recently reviewed the most current Official Positions of the Joint Official Positions of ISCD and IOF on FRAX in view of the different population characteristics and health standards in the AP regions. The reviewed position statements included not only the key spectrum of positions but also unique concerns in AP regions.
Resumo:
Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has recently been introduced in diagnostic microbiology laboratories for the identification of bacterial and yeast strains isolated from clinical samples. In the present study, we prospectively compared MALDI-TOF MS to the conventional phenotypic method for the identification of routine isolates. Colonies were analyzed by MALDI-TOF MS either by direct deposition on the target plate or after a formic acid-acetonitrile extraction step if no valid result was initially obtained. Among 1,371 isolates identified by conventional methods, 1,278 (93.2%) were putatively identified to the species level by MALDI-TOF MS and 73 (5.3%) were identified to the genus level, but no reliable identification was obtained for 20 (1.5%). Among the 1,278 isolates identified to the species level by MALDI-TOF MS, 63 (4.9%) discordant results were initially identified. Most discordant results (42/63) were due to systematic database-related taxonomical differences, 14 were explained by poor discrimination of the MALDI-TOF MS spectra obtained, and 7 were due to errors in the initial conventional identification. An extraction step was required to obtain a valid MALDI-TOF MS identification for 25.6% of the 1,278 valid isolates. In conclusion, our results show that MALDI-TOF MS is a fast and reliable technique which has the potential to replace conventional phenotypic identification for most bacterial strains routinely isolated in clinical microbiology laboratories.
Resumo:
Clinical responses to anticancer therapies are often restricted to a subset of patients. In some cases, mutated cancer genes are potent biomarkers for responses to targeted agents. Here, to uncover new biomarkers of sensitivity and resistance to cancer therapeutics, we screened a panel of several hundred cancer cell lines--which represent much of the tissue-type and genetic diversity of human cancers--with 130 drugs under clinical and preclinical investigation. In aggregate, we found that mutated cancer genes were associated with cellular response to most currently available cancer drugs. Classic oncogene addiction paradigms were modified by additional tissue-specific or expression biomarkers, and some frequently mutated genes were associated with sensitivity to a broad range of therapeutic agents. Unexpected relationships were revealed, including the marked sensitivity of Ewing's sarcoma cells harbouring the EWS (also known as EWSR1)-FLI1 gene translocation to poly(ADP-ribose) polymerase (PARP) inhibitors. By linking drug activity to the functional complexity of cancer genomes, systematic pharmacogenomic profiling in cancer cell lines provides a powerful biomarker discovery platform to guide rational cancer therapeutic strategies.
Resumo:
Nonstructural protein 4B (NS4B) plays an essential role in the formation of the hepatitis C virus (HCV) replication complex. It is a relatively poorly characterized integral membrane protein predicted to comprise four transmembrane segments in its central portion. Here, we describe a novel determinant for membrane association represented by amino acids (aa) 40 to 69 in the N-terminal portion of NS4B. This segment was sufficient to target and tightly anchor the green fluorescent protein to cellular membranes, as assessed by fluorescence microscopy as well as membrane extraction and flotation analyses. Circular dichroism and nuclear magnetic resonance structural analyses showed that this segment comprises an amphipathic alpha-helix extending from aa 42 to 66. Attenuated total reflection infrared spectroscopy and glycosylation acceptor site tagging revealed that this amphipathic alpha-helix has the potential to traverse the phospholipid bilayer as a transmembrane segment, likely upon oligomerization. Alanine substitution of the fully conserved aromatic residues on the hydrophobic helix side abrogated membrane association of the segment comprising aa 40 to 69 and disrupted the formation of a functional replication complex. These results provide the first atomic resolution structure of an essential membrane-associated determinant of HCV NS4B.