28 resultados para zero-inflated
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
When actuaries face with the problem of pricing an insurance contract that contains different types of coverage, such as a motor insurance or homeowner's insurance policy, they usually assume that types of claim are independent. However, this assumption may not be realistic: several studies have shown that there is a positive correlation between types of claim. Here we introduce different regression models in order to relax the independence assumption, including zero-inflated models to account for excess of zeros and overdispersion. These models have been largely ignored to multivariate Poisson date, mainly because of their computational di±culties. Bayesian inference based on MCMC helps to solve this problem (and also lets us derive, for several quantities of interest, posterior summaries to account for uncertainty). Finally, these models are applied to an automobile insurance claims database with three different types of claims. We analyse the consequences for pure and loaded premiums when the independence assumption is relaxed by using different multivariate Poisson regression models and their zero-inflated versions.
Resumo:
In a recent paper Bermúdez [2009] used bivariate Poisson regression models for ratemaking in car insurance, and included zero-inflated models to account for the excess of zeros and the overdispersion in the data set. In the present paper, we revisit this model in order to consider alternatives. We propose a 2-finite mixture of bivariate Poisson regression models to demonstrate that the overdispersion in the data requires more structure if it is to be taken into account, and that a simple zero-inflated bivariate Poisson model does not suffice. At the same time, we show that a finite mixture of bivariate Poisson regression models embraces zero-inflated bivariate Poisson regression models as a special case. Additionally, we describe a model in which the mixing proportions are dependent on covariates when modelling the way in which each individual belongs to a separate cluster. Finally, an EM algorithm is provided in order to ensure the models’ ease-of-fit. These models are applied to the same automobile insurance claims data set as used in Bermúdez [2009] and it is shown that the modelling of the data set can be improved considerably.
Resumo:
Differences in health care utilization of immigrants 50 years of age and older relative to the native-born populations in eleven European countries are investigated. Negative binomial and zero-inflated Poisson regression are used to examine differences between immigrants and native-borns in number of doctor visits, visits to general practitioners, and hospital stays using the 2004 Survey of Health, Ageing, and Retirement in Europe database. In the pooled European sample and in some individual countries, older immigrants use from 13 to 20% more health services than native-borns after demographic characteristics are controlled. After controlling for the need for health care, differences between immigrants and native-borns in the use of physicians, but not hospitals, are reduced by about half. These are not changed much with the incorporation of indicators of socioeconomic status and extra insurance coverage. Higher country-level relative expenditures on health, paying physicians a fee-for-service, and physician density are associated with higher usage of physician services among immigrants.
Resumo:
Bodily injury claims have the greatest impact on the claim costs of motor insurance companies. The disability severity of motor claims is assessed in numerous European countries by means of score systems. In this paper a zero inflated generalized Poisson regression model is implemented to estimate the disability severity score of victims in-volved in motor accidents on Spanish roads. We show that the injury severity estimates may be automatically converted into financial terms by insurers at any point of the claim handling process. As such, the methodology described may be used by motor insurers operating in the Spanish market to monitor the size of bodily injury claims. By using insurance data, various applications are presented in which the score estimate of disability severity is of value to insurers, either for computing the claim compensation or for claim reserve purposes.
Resumo:
The purpose of this short note is to prove that a stable separable C*-algebra with real rank zero has the so-called corona factorization property, that is, all the full multiplier projections are properly in finite. Enroute to our result, we consider conditions under which a real rank zero C*-algebra admits an injection of the compact operators (a question already considered in [21]).
Resumo:
El propòsit d'aquest TFC és presentar una metodologia lleugera per a aplicar en aquesta anomenada
Resumo:
The application of compositional data analysis through log ratio trans-formations corresponds to a multinomial logit model for the shares themselves.This model is characterized by the property of Independence of Irrelevant Alter-natives (IIA). IIA states that the odds ratio in this case the ratio of shares is invariant to the addition or deletion of outcomes to the problem. It is exactlythis invariance of the ratio that underlies the commonly used zero replacementprocedure in compositional data analysis. In this paper we investigate using thenested logit model that does not embody IIA and an associated zero replacementprocedure and compare its performance with that of the more usual approach ofusing the multinomial logit model. Our comparisons exploit a data set that com-bines voting data by electoral division with corresponding census data for eachdivision for the 2001 Federal election in Australia
Resumo:
This paper focus on the problem of locating single-phase faults in mixed distribution electric systems, with overhead lines and underground cables, using voltage and current measurements at the sending-end and sequence model of the network. Since calculating series impedance for underground cables is not as simple as in the case of overhead lines, the paper proposes a methodology to obtain an estimation of zero-sequence impedance of underground cables starting from previous single-faults occurred in the system, in which an electric arc occurred at the fault location. For this reason, the signal is previously pretreated to eliminate its peaks voltage and the analysis can be done working with a signal as close as a sinus wave as possible
Resumo:
The log-ratio methodology makes available powerful tools for analyzing compositionaldata. Nevertheless, the use of this methodology is only possible for those data setswithout null values. Consequently, in those data sets where the zeros are present, aprevious treatment becomes necessary. Last advances in the treatment of compositionalzeros have been centered especially in the zeros of structural nature and in the roundedzeros. These tools do not contemplate the particular case of count compositional datasets with null values. In this work we deal with \count zeros" and we introduce atreatment based on a mixed Bayesian-multiplicative estimation. We use the Dirichletprobability distribution as a prior and we estimate the posterior probabilities. Then weapply a multiplicative modi¯cation for the non-zero values. We present a case studywhere this new methodology is applied.Key words: count data, multiplicative replacement, composition, log-ratio analysis
Resumo:
One of the tantalising remaining problems in compositional data analysis lies in how to deal with data sets in which there are components which are essential zeros. By anessential zero we mean a component which is truly zero, not something recorded as zero simply because the experimental design or the measuring instrument has not been sufficiently sensitive to detect a trace of the part. Such essential zeros occur inmany compositional situations, such as household budget patterns, time budgets,palaeontological zonation studies, ecological abundance studies. Devices such as nonzero replacement and amalgamation are almost invariably ad hoc and unsuccessful insuch situations. From consideration of such examples it seems sensible to build up amodel in two stages, the first determining where the zeros will occur and the secondhow the unit available is distributed among the non-zero parts. In this paper we suggest two such models, an independent binomial conditional logistic normal model and a hierarchical dependent binomial conditional logistic normal model. The compositional data in such modelling consist of an incidence matrix and a conditional compositional matrix. Interesting statistical problems arise, such as the question of estimability of parameters, the nature of the computational process for the estimation of both the incidence and compositional parameters caused by the complexity of the subcompositional structure, the formation of meaningful hypotheses, and the devising of suitable testing methodology within a lattice of such essential zero-compositional hypotheses. The methodology is illustrated by application to both simulated and real compositional data
Resumo:
There is almost not a case in exploration geology, where the studied data doesn’tincludes below detection limits and/or zero values, and since most of the geological dataresponds to lognormal distributions, these “zero data” represent a mathematicalchallenge for the interpretation.We need to start by recognizing that there are zero values in geology. For example theamount of quartz in a foyaite (nepheline syenite) is zero, since quartz cannot co-existswith nepheline. Another common essential zero is a North azimuth, however we canalways change that zero for the value of 360°. These are known as “Essential zeros”, butwhat can we do with “Rounded zeros” that are the result of below the detection limit ofthe equipment?Amalgamation, e.g. adding Na2O and K2O, as total alkalis is a solution, but sometimeswe need to differentiate between a sodic and a potassic alteration. Pre-classification intogroups requires a good knowledge of the distribution of the data and the geochemicalcharacteristics of the groups which is not always available. Considering the zero valuesequal to the limit of detection of the used equipment will generate spuriousdistributions, especially in ternary diagrams. Same situation will occur if we replace thezero values by a small amount using non-parametric or parametric techniques(imputation).The method that we are proposing takes into consideration the well known relationshipsbetween some elements. For example, in copper porphyry deposits, there is always agood direct correlation between the copper values and the molybdenum ones, but whilecopper will always be above the limit of detection, many of the molybdenum values willbe “rounded zeros”. So, we will take the lower quartile of the real molybdenum valuesand establish a regression equation with copper, and then we will estimate the“rounded” zero values of molybdenum by their corresponding copper values.The method could be applied to any type of data, provided we establish first theircorrelation dependency.One of the main advantages of this method is that we do not obtain a fixed value for the“rounded zeros”, but one that depends on the value of the other variable.Key words: compositional data analysis, treatment of zeros, essential zeros, roundedzeros, correlation dependency
Resumo:
L'objectiu d'aquest projecte és dissenyar un sistema per a mesurar en temps real l'acceleració en les tres dimensions basat en un circuit integrat que proporciona senyals d'acceleració. Per a fer-ho, s'ha realitzat un estudi del senyal sensor d'acceleració MXD2125G i s'ha implementat el tractament d'aquest senyal en un microcontrolador MCF5213.
Resumo:
Traditional economic wisdom says that free entry in a market will drive profits down to zero. This conclusion is usually drawn under the assumption of perfect information. We assumethat a priori there exists imperfect information about theprofitability of the market, but that potential entrants maylearn the demand curve perfectly at negligible cost byengaging in market research. Even if in equilibrium firmslearn the demand perfectly, profits may be strictly positivebecause of insufficient entry. The mere fact that it will notbecome common knowledge that every entrant has perfectinformation about demand causes this surprising result. Belief means doubt. Knowing means certainty. Introduction to the Kabalah.
Resumo:
We consider adaptive sequential lossy coding of bounded individual sequences when the performance is measured by the sequentially accumulated mean squared distortion. Theencoder and the decoder are connected via a noiseless channel of capacity $R$ and both are assumed to have zero delay. No probabilistic assumptions are made on how the sequence to be encoded is generated. For any bounded sequence of length $n$, the distortion redundancy is defined as the normalized cumulative distortion of the sequential scheme minus the normalized cumulative distortion of the best scalarquantizer of rate $R$ which is matched to this particular sequence. We demonstrate the existence of a zero-delay sequential scheme which uses common randomization in the encoder and the decoder such that the normalized maximum distortion redundancy converges to zero at a rate $n^{-1/5}\log n$ as the length of the encoded sequence $n$ increases without bound.
Resumo:
We have investigated edge modes of different multipolarity sustained by quantum antidots at zero magnetic field. The ground state of the antidot is described within a local-density-functional formalism. Two sum rules, which are exact within this formalism, have been derived and used to evaluate the energy of edge collective modes as a function of the surface density and the size of the antidot.