111 resultados para uncertainty estimation
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
This paper provides a systematic approach to theproblem of nondata aided symbol-timing estimation for linearmodulations. The study is performed under the unconditionalmaximum likelihood framework where the carrier-frequencyerror is included as a nuisance parameter in the mathematicalderivation. The second-order moments of the received signal arefound to be the sufficient statistics for the problem at hand and theyallow the provision of a robust performance in the presence of acarrier-frequency error uncertainty. We particularly focus on theexploitation of the cyclostationary property of linear modulations.This enables us to derive simple and closed-form symbol-timingestimators which are found to be based on the well-known squaretiming recovery method by Oerder and Meyr. Finally, we generalizethe OM method to the case of linear modulations withoffset formats. In this case, the square-law nonlinearity is foundto provide not only the symbol-timing but also the carrier-phaseerror.
Resumo:
This comment corrects the errors in the estimation process that appear in Martins (2001). The first error is in the parametric probit estimation, as the previously presented results do not maximize the log-likelihood function. In the global maximum more variables become significant. As for the semiparametric estimation method, the kernel function used in Martins (2001) can take on both positive and negative values, which implies that the participation probability estimates may be outside the interval [0,1]. We have solved the problem by applying local smoothing in the kernel estimation, as suggested by Klein and Spady (1993).
Resumo:
I analyze an economy with uncertainty in which a set of indivisible objects and a certain amount of money is to be distributed among agents. The set of intertemporally fair social choice functions based on envy-freeness and Pareto efficiency is characterized. I give a necessary and sufficient condition for its non-emptiness and propose a mechanism that implements the set of intertemporally fair allocations in Bayes-Nash equilibrium. Implementation at the ex ante stage is considered, too. I also generalize the existence result obtained with envy-freeness using a broader fairness concept, introducing the aspiration function.
Resumo:
We report on a series of experiments that test the effects of an uncertain supply on the formation of bids and prices in sequential first-price auctions with private-independent values and unit-demands. Supply is assumed uncertain when buyers do not know the exact number of units to be sold (i.e., the length of the sequence). Although we observe a non-monotone behavior when supply is certain and an important overbidding, the data qualitatively support our price trend predictions and the risk neutral Nash equilibrium model of bidding for the last stage of a sequence, whether supply is certain or not. Our study shows that behavior in these markets changes significantly with the presence of an uncertain supply, and that it can be explained by assuming that bidders formulate pessimistic beliefs about the occurrence of another stage.
Resumo:
We study the relation between the number of firms and price-cost margins under price competition with uncertainty about competitors' costs. We present results of an experiment in which two, three and four identical firms repeatedly interact in this environment. In line with the theoretical prediction, market prices decrease with the number of firms, but on average stay above marginal costs. Pricing is less aggressive in duopolies than in triopolies and tetrapolies. However, independently from the number of firms, pricing is more aggressive than in the theoretical equilibrium. Both the absolute and the relative surpluses increase with the number of firms. Total surplus is close to the equilibrium level, since enhanced consumer surplus through lower prices is counteracted by occasional displacements of the most efficient firm in production.
Resumo:
Given a model that can be simulated, conditional moments at a trial parameter value can be calculated with high accuracy by applying kernel smoothing methods to a long simulation. With such conditional moments in hand, standard method of moments techniques can be used to estimate the parameter. Since conditional moments are calculated using kernel smoothing rather than simple averaging, it is not necessary that the model be simulable subject to the conditioning information that is used to define the moment conditions. For this reason, the proposed estimator is applicable to general dynamic latent variable models. Monte Carlo results show that the estimator performs well in comparison to other estimators that have been proposed for estimation of general DLV models.
Resumo:
Lean meat percentage (LMP) is an important carcass quality parameter. The aim of this work is to obtain a calibration equation for the Computed Tomography (CT) scans with the Partial Least Square Regression (PLS) technique in order to predict the LMP of the carcass and the different cuts and to study and compare two different methodologies of the selection of the variables (Variable Importance for Projection — VIP- and Stepwise) to be included in the prediction equation. The error of prediction with cross-validation (RMSEPCV) of the LMP obtained with PLS and selection based on VIP value was 0.82% and for stepwise selection it was 0.83%. The prediction of the LMP scanning only the ham had a RMSEPCV of 0.97% and if the ham and the loin were scanned the RMSEPCV was 0.90%. Results indicate that for CT data both VIP and stepwise selection are good methods. Moreover the scanning of only the ham allowed us to obtain a good prediction of the LMP of the whole carcass.
Resumo:
Properties of GMM estimators for panel data, which have become very popular in the empirical economic growth literature, are not well known when the number of individuals is small. This paper analyses through Monte Carlo simulations the properties of various GMM and other estimators when the number of individuals is the one typically available in country growth studies. It is found that, provided that some persistency is present in the series, the system GMM estimator has a lower bias and higher efficiency than all the other estimators analysed, including the standard first-differences GMM estimator.
Resumo:
Traffic forecasts provide essential input for the appraisal of transport investment projects. However, according to recent empirical evidence, long-term predictions are subject to high levels of uncertainty. This paper quantifies uncertainty in traffic forecasts for the tolled motorway network in Spain. Uncertainty is quantified in the form of a confidence interval for the traffic forecast that includes both model uncertainty and input uncertainty. We apply a stochastic simulation process based on bootstrapping techniques. Furthermore, the paper proposes a new methodology to account for capacity constraints in long-term traffic forecasts. Specifically, we suggest a dynamic model in which the speed of adjustment is related to the ratio between the actual traffic flow and the maximum capacity of the motorway. This methodology is applied to a specific public policy that consists of suppressing the toll on a certain motorway section before the concession expires.
Resumo:
Abstract. Given a model that can be simulated, conditional moments at a trial parameter value can be calculated with high accuracy by applying kernel smoothing methods to a long simulation. With such conditional moments in hand, standard method of moments techniques can be used to estimate the parameter. Because conditional moments are calculated using kernel smoothing rather than simple averaging, it is not necessary that the model be simulable subject to the conditioning information that is used to define the moment conditions. For this reason, the proposed estimator is applicable to general dynamic latent variable models. It is shown that as the number of simulations diverges, the estimator is consistent and a higher-order expansion reveals the stochastic difference between the infeasible GMM estimator based on the same moment conditions and the simulated version. In particular, we show how to adjust standard errors to account for the simulations. Monte Carlo results show how the estimator may be applied to a range of dynamic latent variable (DLV) models, and that it performs well in comparison to several other estimators that have been proposed for DLV models.
Resumo:
This paper studies optimal monetary policy in a framework that explicitly accounts for policymakers' uncertainty about the channels of transmission of oil prices into the economy. More specfically, I examine the robust response to the real price of oil that US monetary authorities would have been recommended to implement in the period 1970 2009; had they used the approach proposed by Cogley and Sargent (2005b) to incorporate model uncertainty and learning into policy decisions. In this context, I investigate the extent to which regulator' changing beliefs over different models of the economy play a role in the policy selection process. The main conclusion of this work is that, in the specific environment under analysis, one of the underlying models dominates the optimal interest rate response to oil prices. This result persists even when alternative assumptions on the model's priors change the pattern of the relative posterior probabilities, and can thus be attributed to the presence of model uncertainty itself.
Resumo:
This paper presents an analysis of motor vehicle insurance claims relating to vehicle damage and to associated medical expenses. We use univariate severity distributions estimated with parametric and non-parametric methods. The methods are implemented using the statistical package R. Parametric analysis is limited to estimation of normal and lognormal distributions for each of the two claim types. The nonparametric analysis presented involves kernel density estimation. We illustrate the benefits of applying transformations to data prior to employing kernel based methods. We use a log-transformation and an optimal transformation amongst a class of transformations that produces symmetry in the data. The central aim of this paper is to provide educators with material that can be used in the classroom to teach statistical estimation methods, goodness of fit analysis and importantly statistical computing in the context of insurance and risk management. To this end, we have included in the Appendix of this paper all the R code that has been used in the analysis so that readers, both students and educators, can fully explore the techniques described
Resumo:
This paper addresses the issue of policy evaluation in a context in which policymakers are uncertain about the effects of oil prices on economic performance. I consider models of the economy inspired by Solow (1980), Blanchard and Gali (2007), Kim and Loungani (1992) and Hamilton (1983, 2005), which incorporate different assumptions on the channels through which oil prices have an impact on economic activity. I first study the characteristics of the model space and I analyze the likelihood of the different specifications. I show that the existence of plausible alternative representations of the economy forces the policymaker to face the problem of model uncertainty. Then, I use the Bayesian approach proposed by Brock, Durlauf and West (2003, 2007) and the minimax approach developed by Hansen and Sargent (2008) to integrate this form of uncertainty into policy evaluation. I find that, in the environment under analysis, the standard Taylor rule is outperformed under a number of criteria by alternative simple rules in which policymakers introduce persistence in the policy instrument and respond to changes in the real price of oil.
Resumo:
This paper analyses the impact of using different correlation assumptions between lines of business when estimating the risk-based capital reserve, the Solvency Capital Requirement (SCR), under Solvency II regulations. A case study is presented and the SCR is calculated according to the Standard Model approach. Alternatively, the requirement is then calculated using an Internal Model based on a Monte Carlo simulation of the net underwriting result at a one-year horizon, with copulas being used to model the dependence between lines of business. To address the impact of these model assumptions on the SCR we conduct a sensitivity analysis. We examine changes in the correlation matrix between lines of business and address the choice of copulas. Drawing on aggregate historical data from the Spanish non-life insurance market between 2000 and 2009, we conclude that modifications of the correlation and dependence assumptions have a significant impact on SCR estimation.
Resumo:
The Stability and Growth Pact (SGP) was established to govern discretionary fiscal policy in the European Monetary Union. This article studies the effects created when there is uncertainty about the members’ commitment to respecting the established deficit limits in the SGP. We will show that, even if countries respect the SGP deficit ceiling, the presence of uncertainty about their compliance will bring about higher volatility in key economic variables, which could, in turn, affect unemployment and growth negatively. This finding shows that it is important to reduce uncertainty about the members’ commitment towards the SGP. Keywords: fiscal policy rules, monetary union, Stability and Growth Pact, uncertainty, commitment. JEL No.: E63, F55, H62, H87