8 resultados para trasformata di Fourier formule di valutazione modello Black-Scholes e Merton
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
It is very well known that the first succesful valuation of a stock option was done by solving a deterministic partial differential equation (PDE) of the parabolic type with some complementary conditions specific for the option. In this approach, the randomness in the option value process is eliminated through a no-arbitrage argument. An alternative approach is to construct a replicating portfolio for the option. From this viewpoint the payoff function for the option is a random process which, under a new probabilistic measure, turns out to be of a special type, a martingale. Accordingly, the value of the replicating portfolio (equivalently, of the option) is calculated as an expectation, with respect to this new measure, of the discounted value of the payoff function. Since the expectation is, by definition, an integral, its calculation can be made simpler by resorting to powerful methods already available in the theory of analytic functions. In this paper we use precisely two of those techniques to find the well-known value of a European call
Resumo:
It is very well known that the first succesful valuation of a stock option was done by solving a deterministic partial differential equation (PDE) of the parabolic type with some complementary conditions specific for the option. In this approach, the randomness in the option value process is eliminated through a no-arbitrage argument. An alternative approach is to construct a replicating portfolio for the option. From this viewpoint the payoff function for the option is a random process which, under a new probabilistic measure, turns out to be of a special type, a martingale. Accordingly, the value of the replicating portfolio (equivalently, of the option) is calculated as an expectation, with respect to this new measure, of the discounted value of the payoff function. Since the expectation is, by definition, an integral, its calculation can be made simpler by resorting to powerful methods already available in the theory of analytic functions. In this paper we use precisely two of those techniques to find the well-known value of a European call
Resumo:
El nostre treball es centrarà en conèixer i aprendre les nocions bàsiques del mercat financer espanyol, primer; i aplicar uns coneixements per veure si es verifica unahipòtesi plantejada, després. La incògnita que volem resoldre és la següent: comprovarsi tots els supòsits i resultats que faciliten els models teòrics emprats en l’estudi dels mercats financers a l’hora de la veritat es compleixen.D’entre els múltiples conceptes que ens proporcionen els estudis de mercatsfinancers ens centrarem sobretot en el model de Black-Scholes i els somriures devolatilitat per desenvolupar el nostre treball. Després de cercar les dades necessàries a través de la web del M.E.F.F., entrevistar-nos amb professionals del sector i fer un seguiment d’aproximadament dos mesos dels moviments de les opcions sobre l’Índex Mini-Íbex 35, amb l’ajuda d’un programa informàtic en llenguatge C, hem calculat les corbes de volatilitat de les opcions sobre l’Índex Mini-Íbex 35.Les conclusions més importants que hem extret són que el Model de Black-Scholes, malgrat va revolucionar el món dels mercats financers, està basat en 2 supòsits que no es compleixen a la realitat: la distribució lognormal del preu de les accions i unavolatilitat constant. Tal i com hem pogut comprovar, la corba de volatilitat de lesopcions sobre l’Índex Mini-Íbex 35 és decreixent amb el preu d’exercici i laMoneyness, tal i com sostenen les teories dels somriures de volatilitat; per tant, no és constant. A més, hem comprovat que a mesura que s’apropa el venciment d’una opció,el preu acordat de l’actiu subjacent a l’opció s’apropa al preu de mercat.
Resumo:
In this paper we address a problem arising in risk management; namely the study of price variations of different contingent claims in the Black-Scholes model due to anticipating future events. The method we propose to use is an extension of the classical Vega index, i.e. the price derivative with respect to the constant volatility, in thesense that we perturb the volatility in different directions. Thisdirectional derivative, which we denote the local Vega index, will serve as the main object in the paper and one of the purposes is to relate it to the classical Vega index. We show that for all contingent claims studied in this paper the local Vega index can be expressed as a weighted average of the perturbation in volatility. In the particular case where the interest rate and the volatility are constant and the perturbation is deterministic, the local Vega index is an average of this perturbation multiplied by the classical Vega index. We also study the well-known goal problem of maximizing the probability of a perfect hedge and show that the speed of convergence is in fact dependent of the local Vega index.
Resumo:
Among the underlying assumptions of the Black-Scholes option pricingmodel, those of a fixed volatility of the underlying asset and of aconstantshort-term riskless interest rate, cause the largest empirical biases. Onlyrecently has attention been paid to the simultaneous effects of thestochasticnature of both variables on the pricing of options. This paper has tried toestimate the effects of a stochastic volatility and a stochastic interestrate inthe Spanish option market. A discrete approach was used. Symmetricand asymmetricGARCH models were tried. The presence of in-the-mean and seasonalityeffectswas allowed. The stochastic processes of the MIBOR90, a Spanishshort-terminterest rate, from March 19, 1990 to May 31, 1994 and of the volatilityofthe returns of the most important Spanish stock index (IBEX-35) fromOctober1, 1987 to January 20, 1994, were estimated. These estimators wereused onpricing Call options on the stock index, from November 30, 1993 to May30, 1994.Hull-White and Amin-Ng pricing formulas were used. These prices werecomparedwith actual prices and with those derived from the Black-Scholesformula,trying to detect the biases reported previously in the literature. Whereasthe conditional variance of the MIBOR90 interest rate seemed to be freeofARCH effects, an asymmetric GARCH with in-the-mean and seasonalityeffectsand some evidence of persistence in variance (IEGARCH(1,2)-M-S) wasfoundto be the model that best represent the behavior of the stochasticvolatilityof the IBEX-35 stock returns. All the biases reported previously in theliterature were found. All the formulas overpriced the options inNear-the-Moneycase and underpriced the options otherwise. Furthermore, in most optiontrading, Black-Scholes overpriced the options and, because of thetime-to-maturityeffect, implied volatility computed from the Black-Scholes formula,underestimatedthe actual volatility.
Resumo:
By means of classical Itô's calculus we decompose option prices asthe sum of the classical Black-Scholes formula with volatility parameterequal to the root-mean-square future average volatility plus a term dueby correlation and a term due to the volatility of the volatility. Thisdecomposition allows us to develop first and second-order approximationformulas for option prices and implied volatilities in the Heston volatilityframework, as well as to study their accuracy. Numerical examples aregiven.
Resumo:
In this paper we use Malliavin calculus techniques to obtain an expression for the short-time behavior of the at-the-money implied volatility skew for a generalization of the Bates model, where the volatility does not need to be neither a difussion, nor a Markov process as the examples in section 7 show. This expression depends on the derivative of the volatility in the sense of Malliavin calculus.
Resumo:
La legge costituzionale 1/1999 per le Regioni ordinarie (e la successiva 2/2001 per le Speciali) ha rappresentato un punto di svolta fondamentale del regionalismo italiano. Essa ha stabilito il principio dell’elezione popolare diretta del Presidente della Regione, a cui si collega un premio di maggioranza nel Consiglio regionale secondo il cosiddetto modello neo-parlamentare. Qualsiasi interruzione del rapporto fiduciario per dimissioni del Presidente o approvazione di una mozione di sfiducia porterebbe a nuove elezioni, cosa che rappresenta un serissimo deterrente alle crisi. La riforma prevedeva anche la possibilità per le Regioni di derogare col proprio Statuto a tali scelte tornando all’elezione consiliare e a sostituzioni della maggioranza. Nonostante alcuni tentativi di sfuggire alla regola del governo di legislatura utilizzando tale deroga in modo esplicito o surrettizio, seguendo vecchi retaggi assemblearisti, l’elezione diretta si è imposta ovunque, garantendo a tutte le Regioni analoghi e inediti standards di governabilità.