29 resultados para symmetric distribution functions

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An analytical approach for the interpretation of multicomponent heterogeneous adsorption or complexation isotherms in terms of multidimensional affinity spectra is presented. Fourier transform, applied to analyze the corresponding integral equation, leads to an inversion formula which allows the computation of the multicomponent affinity spectrum underlying a given competitive isotherm. Although a different mathematical methodology is used, this procedure can be seen as the extension to multicomponent systems of the classical Sips’s work devoted to monocomponent systems. Furthermore, a methodology which yields analytical expressions for the main statistical properties (mean free energies of binding and covariance matrix) of multidimensional affinity spectra is reported. Thus, the level of binding correlation between the different components can be quantified. It has to be highlighted that the reported methodology does not require the knowledge of the affinity spectrum to calculate the means, variances, and covariance of the binding energies of the different components. Nonideal competitive consistent adsorption isotherm, widely used in metal/proton competitive complexation to environmental macromolecules, and Frumkin competitive isotherms are selected to illustrate the application of the reported results. Explicit analytical expressions for the affinity spectrum as well as for the matrix correlation are obtained for the NICCA case. © 2004 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a new kernel estimation of the cumulative distribution function based on transformation and on bias reducing techniques. We derive the optimal bandwidth that minimises the asymptotic integrated mean squared error. The simulation results show that our proposed kernel estimation improves alternative approaches when the variable has an extreme value distribution with heavy tail and the sample size is small.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper we deal with the identification of dependencies between time series of equity returns. Marginal distribution functions are assumed to be known, and a bivariate chi-square test of fit is applied in a fully parametric copula approach. Several families of copulas are fitted and compared with Spanish stock market data. The results show that the t-copula generally outperforms other dependence structures, and highlight the difficulty in adjusting a significant number of bivariate data series

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper we deal with the identification of dependencies between time series of equity returns. Marginal distribution functions are assumed to be known, and a bivariate chi-square test of fit is applied in a fully parametric copula approach. Several families of copulas are fitted and compared with Spanish stock market data. The results show that the t-copula generally outperforms other dependence structures, and highlight the difficulty in adjusting a significant number of bivariate data series

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The paper proposes and applies statistical tests for poverty dominance that check for whether poverty comparisons can be made robustly over ranges of poverty lines and classes of poverty indices. This helps provide both normative and statistical confidence in establishing poverty rankings across distributions. The tests, which can take into account the complex sampling procedures that are typically used by statistical agencies to generate household-level surveys, are implemented using the Canadian Survey of Labour and Income Dynamics (SLID) for 1996, 1999 and 2002. Although the yearly cumulative distribution functions cross at the lower tails of the distributions, the more recent years tend to dominate earlier years for a relatively wide range of poverty lines. Failing to take into account SLID's sampling variability (as is sometimes done) can inflate significantly one's confidence in ranking poverty. Taking into account SLID's complex sampling design (as has not been done before) can also decrease substantially the range of poverty lines over which a poverty ranking can be inferred.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To describe the collective behavior of large ensembles of neurons in neuronal network, a kinetic theory description was developed in [13, 12], where a macroscopic representation of the network dynamics was directly derived from the microscopic dynamics of individual neurons, which are modeled by conductance-based, linear, integrate-and-fire point neurons. A diffusion approximation then led to a nonlinear Fokker-Planck equation for the probability density function of neuronal membrane potentials and synaptic conductances. In this work, we propose a deterministic numerical scheme for a Fokker-Planck model of an excitatory-only network. Our numerical solver allows us to obtain the time evolution of probability distribution functions, and thus, the evolution of all possible macroscopic quantities that are given by suitable moments of the probability density function. We show that this deterministic scheme is capable of capturing the bistability of stationary states observed in Monte Carlo simulations. Moreover, the transient behavior of the firing rates computed from the Fokker-Planck equation is analyzed in this bistable situation, where a bifurcation scenario, of asynchronous convergence towards stationary states, periodic synchronous solutions or damped oscillatory convergence towards stationary states, can be uncovered by increasing the strength of the excitatory coupling. Finally, the computation of moments of the probability distribution allows us to validate the applicability of a moment closure assumption used in [13] to further simplify the kinetic theory.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The dynamics of homogeneously heated granular gases which fragment due to particle collisions is analyzed. We introduce a kinetic model which accounts for correlations induced at the grain collisions and analyze both the kinetics and relevant distribution functions these systems develop. The work combines analytical and numerical studies based on direct simulation Monte Carlo calculations. A broad family of fragmentation probabilities is considered, and its implications for the system kinetics are discussed. We show that generically these driven materials evolve asymptotically into a dynamical scaling regime. If the fragmentation probability tends to a constant, the grain number diverges at a finite time, leading to a shattering singularity. If the fragmentation probability vanishes, then the number of grains grows monotonously as a power law. We consider different homogeneous thermostats and show that the kinetics of these systems depends weakly on both the grain inelasticity and driving. We observe that fragmentation plays a relevant role in the shape of the velocity distribution of the particles. When the fragmentation is driven by local stochastic events, the longvelocity tail is essentially exponential independently of the heating frequency and the breaking rule. However, for a Lowe-Andersen thermostat, numerical evidence strongly supports the conjecture that the scaled velocity distribution follows a generalized exponential behavior f (c)~exp (−cⁿ), with n ≈1.2, regarding less the fragmentation mechanisms

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The well--known Minkowski's? $(x)$ function is presented as the asymptotic distribution function of an enumeration of the rationals in (0,1] based on their continued fraction representation. Besides, the singularity of ?$(x)$ is clearly proved in two ways: by exhibiting a set of measure one in which ?ï$(x)$ = 0; and again by actually finding a set of measure one which is mapped onto a set of measure zero and viceversa. These sets are described by means of metrical properties of different systems for real number representation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

When the behaviour of a specific hypothesis test statistic is studied by aMonte Carlo experiment, the usual way to describe its quality is by givingthe empirical level of the test. As an alternative to this procedure, we usethe empirical distribution of the obtained \emph{p-}values and exploit itsinformation both graphically and numerically.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The energy and structure of dilute hard- and soft-sphere Bose gases are systematically studied in the framework of several many-body approaches, such as the variational correlated theory, the Bogoliubov model, and the uniform limit approximation, valid in the weak-interaction regime. When possible, the results are compared with the exact diffusion Monte Carlo ones. Jastrow-type correlation provides a good description of the systems, both hard- and soft-spheres, if the hypernetted chain energy functional is freely minimized and the resulting Euler equation is solved. The study of the soft-sphere potentials confirms the appearance of a dependence of the energy on the shape of the potential at gas paremeter values of x~0.001. For quantities other than the energy, such as the radial distribution functions and the momentum distributions, the dependence appears at any value of x. The occurrence of a maximum in the radial distribution function, in the momentum distribution, and in the excitation spectrum is a natural effect of the correlations when x increases. The asymptotic behaviors of the functions characterizing the structure of the systems are also investigated. The uniform limit approach is very easy to implement and provides a good description of the soft-sphere gas. Its reliability improves when the interaction weakens.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We derive a simple closed analytical expression for the total entropy production along a single stochastic trajectory of a Brownian particle diffusing on a periodic potential under an external constant force. By numerical simulations we compute the probability distribution functions of the entropy and satisfactorily test many of the predictions based on Seiferts integral fluctuation theorem. The results presented for this simple model clearly illustrate the practical features and implications derived from such a result of nonequilibrium statistical mechanics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this Contribution we show that a suitably defined nonequilibrium entropy of an N-body isolated system is not a constant of the motion, in general, and its variation is bounded, the bounds determined by the thermodynamic entropy, i.e., the equilibrium entropy. We define the nonequilibrium entropy as a convex functional of the set of n-particle reduced distribution functions (n ? N) generalizing the Gibbs fine-grained entropy formula. Additionally, as a consequence of our microscopic analysis we find that this nonequilibrium entropy behaves as a free entropic oscillator. In the approach to the equilibrium regime, we find relaxation equations of the Fokker-Planck type, particularly for the one-particle distribution function.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Flood simulation studies use spatial-temporal rainfall data input into distributed hydrological models. A correct description of rainfall in space and in time contributes to improvements on hydrological modelling and design. This work is focused on the analysis of 2-D convective structures (rain cells), whose contribution is especially significant in most flood events. The objective of this paper is to provide statistical descriptors and distribution functions for convective structure characteristics of precipitation systems producing floods in Catalonia (NE Spain). To achieve this purpose heavy rainfall events recorded between 1996 and 2000 have been analysed. By means of weather radar, and applying 2-D radar algorithms a distinction between convective and stratiform precipitation is made. These data are introduced and analyzed with a GIS. In a first step different groups of connected pixels with convective precipitation are identified. Only convective structures with an area greater than 32 km2 are selected. Then, geometric characteristics (area, perimeter, orientation and dimensions of the ellipse), and rainfall statistics (maximum, mean, minimum, range, standard deviation, and sum) of these structures are obtained and stored in a database. Finally, descriptive statistics for selected characteristics are calculated and statistical distributions are fitted to the observed frequency distributions. Statistical analyses reveal that the Generalized Pareto distribution for the area and the Generalized Extreme Value distribution for the perimeter, dimensions, orientation and mean areal precipitation are the statistical distributions that best fit the observed ones of these parameters. The statistical descriptors and the probability distribution functions obtained are of direct use as an input in spatial rainfall generators.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We propose a new family of risk measures, called GlueVaR, within the class of distortion risk measures. Analytical closed-form expressions are shown for the most frequently used distribution functions in financial and insurance applications. The relationship between Glue-VaR, Value-at-Risk (VaR) and Tail Value-at-Risk (TVaR) is explained. Tail-subadditivity is investigated and it is shown that some GlueVaR risk measures satisfy this property. An interpretation in terms of risk attitudes is provided and a discussion is given on the applicability in non-financial problems such as health, safety, environmental or catastrophic risk management

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new family of distortion risk measures -GlueVaR- is proposed in Belles- Sampera et al. -2013- to procure a risk assessment lying between those provided by common quantile-based risk measures. GlueVaR risk measures may be expressed as a combination of these standard risk measures. We show here that this relationship may be used to obtain approximations of GlueVaR measures for general skewed distribution functions using the Cornish-Fisher expansion. A subfamily of GlueVaR measures satisfies the tail-subadditivity property. An example of risk measurement based on real insurance claim data is presented, where implications of tail-subadditivity in the aggregation of risks are illustrated.