2 resultados para suboptimality

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We address the problem of scheduling a multiclass $M/M/m$ queue with Bernoulli feedback on $m$ parallel servers to minimize time-average linear holding costs. We analyze the performance of a heuristic priority-index rule, which extends Klimov's optimal solution to the single-server case: servers select preemptively customers with larger Klimov indices. We present closed-form suboptimality bounds (approximate optimality) for Klimov's rule, which imply that its suboptimality gap is uniformly bounded above with respect to (i) external arrival rates, as long as they stay within system capacity;and (ii) the number of servers. It follows that its relativesuboptimality gap vanishes in a heavy-traffic limit, as external arrival rates approach system capacity (heavy-traffic optimality). We obtain simpler expressions for the special no-feedback case, where the heuristic reduces to the classical $c \mu$ rule. Our analysis is based on comparing the expected cost of Klimov's ruleto the value of a strong linear programming (LP) relaxation of the system's region of achievable performance of mean queue lengths. In order to obtain this relaxation, we derive and exploit a new set ofwork decomposition laws for the parallel-server system. We further report on the results of a computational study on the quality of the $c \mu$ rule for parallel scheduling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We develop a mathematical programming approach for the classicalPSPACE - hard restless bandit problem in stochastic optimization.We introduce a hierarchy of n (where n is the number of bandits)increasingly stronger linear programming relaxations, the lastof which is exact and corresponds to the (exponential size)formulation of the problem as a Markov decision chain, while theother relaxations provide bounds and are efficiently computed. Wealso propose a priority-index heuristic scheduling policy fromthe solution to the first-order relaxation, where the indices aredefined in terms of optimal dual variables. In this way wepropose a policy and a suboptimality guarantee. We report resultsof computational experiments that suggest that the proposedheuristic policy is nearly optimal. Moreover, the second-orderrelaxation is found to provide strong bounds on the optimalvalue.