118 resultados para special functions
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Fekete points are the points that maximize a Vandermonde-type determinant that appears in the polynomial Lagrange interpolation formula. They are well suited points for interpolation formulas and numerical integration. We prove the asymptotic equidistribution of Fekete points in the sphere. The way we proceed is by showing their connection to other arrays of points, the so-called Marcinkiewicz-Zygmund arrays and interpolating arrays, that have been studied recently.
Resumo:
We present a new asymptotic formula for the maximum static voltage in a simplified model for on-chip power distribution networks of array bonded integrated circuits. In this model the voltage is the solution of a Poisson equation in an infinite planar domain whose boundary is an array of circular pads of radius ", and we deal with the singular limit Ɛ → 0 case. In comparison with approximations that appear in the electronic engineering literature, our formula is more complete since we have obtained terms up to order Ɛ15. A procedure will be presented to compute all the successive terms, which can be interpreted as using multipole solutions of equations involving spatial derivatives of functions. To deduce the formula we use the method of matched asymptotic expansions. Our results are completely analytical and we make an extensive use of special functions and of the Gauss constant G
Resumo:
Fekete points are the points that maximize a Vandermonde-type determinant that appears in the polynomial Lagrange interpolation formula. They are well suited points for interpolation formulas and numerical integration. We prove the asymptotic equidistribution of Fekete points in the sphere. The way we proceed is by showing their connection to other arrays of points, the so-called Marcinkiewicz-Zygmund arrays and interpolating arrays, that have been studied recently.
Resumo:
Molecular dynamics simulation is applied to the study of the diffusion properties in binary liquid mixtures made up of soft-sphere particles with different sizes and masses. Self- and distinct velocity correlation functions and related diffusion coefficients have been calculated. Special attention has been paid to the dynamic cross correlations which have been computed through recently introduced relative mean molecular velocity correlation functions which are independent on the reference frame. The differences between the distinct velocity correlations and diffusion coefficients in different reference frames (mass-fixed, number-fixed, and solvent-fixed) are discussed.
Resumo:
L'anàlisi de la densitat urbana és utilitzada per examinar la distribució espacial de la població dins de les àrees urbanes, i és força útil per planificar els serveis públics. En aquest article, s'estudien setze formes funcionals clàssiques de la relació existent entre la densitat i la distancia en la regió metropolitana de Barcelona i els seus onze subcentres.
Resumo:
Vegeu el resum a l'inici del document del fitxer adjunt
Resumo:
We prove that any subanalytic locally Lipschitz function has the Sard property. Such functions are typically nonsmooth and their lack of regularity necessitates the choice of some generalized notion of gradient and of critical point. In our framework these notions are defined in terms of the Clarke and of the convex-stable subdifferentials. The main result of this note asserts that for any subanalytic locally Lipschitz function the set of its Clarke critical values is locally finite. The proof relies on Pawlucki's extension of the Puiseuxlemma. In the last section we give an example of a continuous subanalytic function which is not constant on a segment of "broadly critical" points, that is, points for which we can find arbitrarily short convex combinations of gradients at nearby points.
Resumo:
We report on a series of experiments that examine bidding behavior in first-price sealed bid auctions with symmetric and asymmetric bidders. To study the extent of strategic behavior, we use an experimental design that elicits bidders' complete bid functions in each round (auction) of the experiment. In the aggregate, behavior is consistent with the basic equilibrium predictions for risk neutral or homogenous risk averse bidders (extent of bid shading, average seller's revenues and deviations from equilibrium). However, when we look at the extent of best reply behavior and the shape of bid functions, we find that individual behavior is not in line with the received equilibrium models, although it exhibits strategic sophistication.
Resumo:
In microeconomic analysis functions with diminishing returns to scale (DRS) have frequently been employed. Various properties of increasing quasiconcave aggregator functions with DRS are derived. Furthermore duality in the classical sense as well as of a new type is studied for such aggregator functions in production and consumer theory. In particular representation theorems for direct and indirect aggregator functions are obtained. These involve only small sets of generator functions. The study is carried out in the contemporary framework of abstract convexity and abstract concavity.
Resumo:
We investigate the properties of a family of social evaluation functions and inequality indices which merge the features of the family of Atkinson (1970) and S-Gini (Donaldson and Weymark (1980, 1983), Yitzhaki (1983) and Kakwani (1980)) indices. Income inequality aversion is captured by decreasing marginal utilities, and aversion to rank inequality is captured by rank-dependent ethical weights, thus providing an ethically-flexible dual basis for the assessment of inequality and equity. These ocial evaluation functions can be interpreted as average utility corrected for the illfare of relative deprivation. They can alternatively be understood as averages of altruistic well-being in a population. They moreover have a simple graphical interpretation.
Resumo:
This paper studies collective choice rules whose outcomes consist of a collection of simultaneous decisions, each one of which is the only concern of some group of individuals in society. The need for such rules arises in different contexts, including the establishment of jurisdictions, the location of multiple public facilities, or the election of representative committees. We define a notion of allocation consistency requiring that each partial aspect of the global decision taken by society as a whole should be ratified by the group of agents who are directly concerned with this particular aspect. We investigate the possibility of designing envy-free allocation consistent rules, we also explore whether such rules may also respect the Condorcet criterion.
Resumo:
The presence of subcentres cannot be captured by an exponential function. Cubic spline functions seem more appropriate to depict the polycentricity pattern of modern urban systems. Using data from Barcelona Metropolitan Region, two possible population subcentre delimitation procedures are discussed. One, taking an estimated derivative equal to zero, the other, a density gradient equal to zero. It is argued that, in using a cubic spline function, a delimitation strategy based on derivatives is more appropriate than one based on gradients because the estimated density can be negative in sections with very low densities and few observations, leading to sudden changes in estimated gradients. It is also argued that using as a criteria for subcentre delimitation a second derivative with value zero allow us to capture a more restricted subcentre area than using as a criteria a first derivative zero. This methodology can also be used for intermediate ring delimitation.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
We prove that the Cuntz semigroup is recovered functorially from the Elliott invariant for a large class of C¤-algebras. In particular, our results apply to the largest class of simple C¤-algebras for which K-theoretic classification can be hoped for. This work has three significant consequences. First, it provides new conceptual insight into Elliott's classification program, proving that the usual form of the Elliott conjecture is equivalent, among Z-stable algebras, to a conjecture which is in general substantially weaker and for which there are no known counterexamples. Second and third, it resolves, for the class of algebras above, two conjectures of Blackadar and Handelman concerning the basic structure of dimension functions on C¤-algebras. We also prove in passing that the Kuntz-Pedersen semigroup is recovered functorially from the Elliott invariant for all simple unital C¤-algebras of interest.