48 resultados para speaker clustering
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Memòria elaborada a partir d’una estada al projecte Proteus de la New York University entre abril i juny del 2007. Les tècniques de clustering poden ajudar a reduir la supervisió en processos d’obtenció de patrons per a Extracció d’Informació. Tanmateix, és necessari disposar d’algorismes adequats a documents, i aquests algorismes requereixen mesures adequades de similitud entre patrons. Els kernels poden oferir una solució a aquests problemes, però l’aprenentatge no supervisat requereix d’estrat`egies m´es astutes que l’aprenentatge supervisat per a incorporar major quantitat d’informació. En aquesta memòria, fruit de la meva estada de mes d’Abril al de Juny de 2007 al projecte. Proteus de la New York University, es proposen i avaluen diversos kernels sobre patrons. Ini- cialment s’estudien kernels amb una família de patrons restringits, i a continuació s’apliquen kernels ja usats en tasques supervisades d’Extracció d’Informació. Degut a la degradació del rendiment que experimenta el clustering a l’afegir informació irrellevant, els kernels se simpli- fiquen i es busquen estratègies per a incorporar-hi semàntica de forma selectiva. Finalment, s’estudia quin efecte té aplicar clustering sobre el coneixement semàntic com a pas previ al clustering de patrons. Les diverses estratègies s’avaluen en tasques de clustering de documents i patrons usant dades reals.
Resumo:
Creative industries tend to concentrate mainly around large- and medium-sized cities, forming creative local production systems. The text analyses the forces behind clustering of creative industries to provide the first empirical explanation of the determinants of creative employment clustering following a multidisciplinary approach based on cultural and creative economics, evolutionary geography and urban economics. A comparative analysis has been performed for Italy and Spain. The results show different patterns of creative employment clustering in both countries. The small role of historical and cultural endowments, the size of the place, the average size of creative industries, the productive diversity and the concentration of human capital and creative class have been found as common factors of clustering in both countries.
Resumo:
Concerns on the clustering of retail industries and professional services in main streets had traditionally been the public interest rationale for supporting distance regulations. Although many geographic restrictions have been suppressed, deregulation has hinged mostly upon the theory results on the natural tendency of outlets to differentiate spatially. Empirical evidence has so far offered mixed results. Using the case of deregulation of pharmacy establishment in a region of Spain, we empirically show how pharmacy locations scatter, and that there is not rationale for distance regulation apart from the underlying private interest of very few incumbents.
Resumo:
In image segmentation, clustering algorithms are very popular because they are intuitive and, some of them, easy to implement. For instance, the k-means is one of the most used in the literature, and many authors successfully compare their new proposal with the results achieved by the k-means. However, it is well known that clustering image segmentation has many problems. For instance, the number of regions of the image has to be known a priori, as well as different initial seed placement (initial clusters) could produce different segmentation results. Most of these algorithms could be slightly improved by considering the coordinates of the image as features in the clustering process (to take spatial region information into account). In this paper we propose a significant improvement of clustering algorithms for image segmentation. The method is qualitatively and quantitative evaluated over a set of synthetic and real images, and compared with classical clustering approaches. Results demonstrate the validity of this new approach
Resumo:
Our purpose is to provide a set-theoretical frame to clustering fuzzy relational data basically based on cardinality of the fuzzy subsets that represent objects and their complementaries, without applying any crisp property. From this perspective we define a family of fuzzy similarity indexes which includes a set of fuzzy indexes introduced by Tolias et al, and we analyze under which conditions it is defined a fuzzy proximity relation. Following an original idea due to S. Miyamoto we evaluate the similarity between objects and features by means the same mathematical procedure. Joining these concepts and methods we establish an algorithm to clustering fuzzy relational data. Finally, we present an example to make clear all the process
Resumo:
Estudi, disseny i implementació de diferents tècniques d’agrupament defibres (clustering) per tal d’integrar a la plataforma DTIWeb diferentsalgorismes de clustering i tècniques de visualització de clústers de fibres de forma quefaciliti la interpretació de dades de DTI als especialistes
Resumo:
In this project a research both in finding predictors via clustering techniques and in reviewing the Data Mining free software is achieved. The research is based in a case of study, from where additionally to the KDD free software used by the scientific community; a new free tool for pre-processing the data is presented. The predictors are intended for the e-learning domain as the data from where these predictors have to be inferred are student qualifications from different e-learning environments. Through our case of study not only clustering algorithms are tested but also additional goals are proposed.
Resumo:
HEMOLIA (a project under European community’s 7th framework programme) is a new generation Anti-Money Laundering (AML) intelligent multi-agent alert and investigation system which in addition to the traditional financial data makes extensive use of modern society’s huge telecom data source, thereby opening up a new dimension of capabilities to all Money Laundering fighters (FIUs, LEAs) and Financial Institutes (Banks, Insurance Companies, etc.). This Master-Thesis project is done at AIA, one of the partners for the HEMOLIA project in Barcelona. The objective of this thesis is to find the clusters in a network drawn by using the financial data. An extensive literature survey has been carried out and several standard algorithms related to networks have been studied and implemented. The clustering problem is a NP-hard problem and several algorithms like K-Means and Hierarchical clustering are being implemented for studying several problems relating to sociology, evolution, anthropology etc. However, these algorithms have certain drawbacks which make them very difficult to implement. The thesis suggests (a) a possible improvement to the K-Means algorithm, (b) a novel approach to the clustering problem using the Genetic Algorithms and (c) a new algorithm for finding the cluster of a node using the Genetic Algorithm.
Resumo:
Our essay aims at studying suitable statistical methods for the clustering ofcompositional data in situations where observations are constituted by trajectories ofcompositional data, that is, by sequences of composition measurements along a domain.Observed trajectories are known as “functional data” and several methods have beenproposed for their analysis.In particular, methods for clustering functional data, known as Functional ClusterAnalysis (FCA), have been applied by practitioners and scientists in many fields. To ourknowledge, FCA techniques have not been extended to cope with the problem ofclustering compositional data trajectories. In order to extend FCA techniques to theanalysis of compositional data, FCA clustering techniques have to be adapted by using asuitable compositional algebra.The present work centres on the following question: given a sample of compositionaldata trajectories, how can we formulate a segmentation procedure giving homogeneousclasses? To address this problem we follow the steps described below.First of all we adapt the well-known spline smoothing techniques in order to cope withthe smoothing of compositional data trajectories. In fact, an observed curve can bethought of as the sum of a smooth part plus some noise due to measurement errors.Spline smoothing techniques are used to isolate the smooth part of the trajectory:clustering algorithms are then applied to these smooth curves.The second step consists in building suitable metrics for measuring the dissimilaritybetween trajectories: we propose a metric that accounts for difference in both shape andlevel, and a metric accounting for differences in shape only.A simulation study is performed in order to evaluate the proposed methodologies, usingboth hierarchical and partitional clustering algorithm. The quality of the obtained resultsis assessed by means of several indices
Resumo:
Globalization involves several facility location problems that need to be handled at large scale. Location Allocation (LA) is a combinatorial problem in which the distance among points in the data space matter. Precisely, taking advantage of the distance property of the domain we exploit the capability of clustering techniques to partition the data space in order to convert an initial large LA problem into several simpler LA problems. Particularly, our motivation problem involves a huge geographical area that can be partitioned under overall conditions. We present different types of clustering techniques and then we perform a cluster analysis over our dataset in order to partition it. After that, we solve the LA problem applying simulated annealing algorithm to the clustered and non-clustered data in order to work out how profitable is the clustering and which of the presented methods is the most suitable
Resumo:
BACKGROUND: The trithorax group (trxG) and Polycomb group (PcG) proteins are responsible for the maintenance of stable transcriptional patterns of many developmental regulators. They bind to specific regions of DNA and direct the post-translational modifications of histones, playing a role in the dynamics of chromatin structure. RESULTS: We have performed genome-wide expression studies of trx and ash2 mutants in Drosophila melanogaster. Using computational analysis of our microarray data, we have identified 25 clusters of genes potentially regulated by TRX. Most of these clusters consist of genes that encode structural proteins involved in cuticle formation. This organization appears to be a distinctive feature of the regulatory networks of TRX and other chromatin regulators, since we have observed the same arrangement in clusters after experiments performed with ASH2, as well as in experiments performed by others with NURF, dMyc, and ASH1. We have also found many of these clusters to be significantly conserved in D. simulans, D. yakuba, D. pseudoobscura and partially in Anopheles gambiae. CONCLUSION: The analysis of genes governed by chromatin regulators has led to the identification of clusters of functionally related genes conserved in other insect species, suggesting this chromosomal organization is biologically important. Moreover, our results indicate that TRX and other chromatin regulators may act globally on chromatin domains that contain transcriptionally co-regulated genes.
Resumo:
Acquiring lexical information is a complex problem, typically approached by relying on a number of contexts to contribute information for classification. One of the first issues to address in this domain is the determination of such contexts. The work presented here proposes the use of automatically obtained FORMAL role descriptors as features used to draw nouns from the same lexical semantic class together in an unsupervised clustering task. We have dealt with three lexical semantic classes (HUMAN, LOCATION and EVENT) in English. The results obtained show that it is possible to discriminate between elements from different lexical semantic classes using only FORMAL role information, hence validating our initial hypothesis. Also, iterating our method accurately accounts for fine-grained distinctions within lexical classes, namely distinctions involving ambiguous expressions. Moreover, a filtering and bootstrapping strategy employed in extracting FORMAL role descriptors proved to minimize effects of sparse data and noise in our task.
Resumo:
The article examines the structure of the collaboration networks of research groups where Slovenian and Spanish PhD students are pursuing their doctorate. The units of analysis are student-supervisor dyads. We use duocentred networks, a novel network structure appropriate for networks which are centred around a dyad. A cluster analysis reveals three typical clusters of research groups. Those which are large and belong to several institutions are labelled under a bridging social capital label. Those which are small, centred in a single institution but have high cohesion are labelled as bonding social capital. Those which are small and with low cohesion are called weak social capital groups. Academic performance of both PhD students and supervisors are highest in bridging groups and lowest in weak groups. Other variables are also found to differ according to the type of research group. At the end, some recommendations regarding academic and research policy are drawn
Resumo:
We develop a full theoretical approach to clustering in complex networks. A key concept is introduced, the edge multiplicity, that measures the number of triangles passing through an edge. This quantity extends the clustering coefficient in that it involves the properties of two¿and not just one¿vertices. The formalism is completed with the definition of a three-vertex correlation function, which is the fundamental quantity describing the properties of clustered networks. The formalism suggests different metrics that are able to thoroughly characterize transitive relations. A rigorous analysis of several real networks, which makes use of this formalism and the metrics, is also provided. It is also found that clustered networks can be classified into two main groups: the weak and the strong transitivity classes. In the first class, edge multiplicity is small, with triangles being disjoint. In the second class, edge multiplicity is high and so triangles share many edges. As we shall see in the following paper, the class a network belongs to has strong implications in its percolation properties.
Resumo:
The percolation properties of clustered networks are analyzed in detail. In the case of weak clustering, we present an analytical approach that allows us to find the critical threshold and the size of the giant component. Numerical simulations confirm the accuracy of our results. In more general terms, we show that weak clustering hinders the onset of the giant component whereas strong clustering favors its appearance. This is a direct consequence of the differences in the k-core structure of the networks, which are found to be totally different depending on the level of clustering. An empirical analysis of a real social network confirms our predictions.