102 resultados para single-bootstrap truncated regression

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study focuses on single-case data analysis and specifically on two procedures for quantifying differences between baseline and treatment measurements The first technique tested is based on generalized least squares regression analysis and is compared to a proposed non-regression technique, which allows obtaining similar information. The comparison is carried out in the context of generated data representing a variety of patterns (i.e., independent measurements, different serial dependence underlying processes, constant or phase-specific autocorrelation and data variability, different types of trend, and slope and level change). The results suggest that the two techniques perform adequately for a wide range of conditions and researchers can use both of them with certain guarantees. The regression-based procedure offers more efficient estimates, whereas the proposed non-regression procedure is more sensitive to intervention effects. Considering current and previous findings, some tentative recommendations are offered to applied researchers in order to help choosing among the plurality of single-case data analysis techniques.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present study evaluates the performance of four methods for estimating regression coefficients used to make statistical decisions regarding intervention effectiveness in single-case designs. Ordinary least squares estimation is compared to two correction techniques dealing with general trend and one eliminating autocorrelation whenever it is present. Type I error rates and statistical power are studied for experimental conditions defined by the presence or absence of treatment effect (change in level or in slope), general trend, and serial dependence. The results show that empirical Type I error rates do not approximate the nominal ones in presence of autocorrelation or general trend when ordinary and generalized least squares are applied. The techniques controlling trend show lower false alarm rates, but prove to be insufficiently sensitive to existing treatment effects. Consequently, the use of the statistical significance of the regression coefficients for detecting treatment effects is not recommended for short data series.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the application of normal theory methods to the estimation and testing of a general type of multivariate regressionmodels with errors--in--variables, in the case where various data setsare merged into a single analysis and the observable variables deviatepossibly from normality. The various samples to be merged can differ on the set of observable variables available. We show that there is a convenient way to parameterize the model so that, despite the possiblenon--normality of the data, normal--theory methods yield correct inferencesfor the parameters of interest and for the goodness--of--fit test. Thetheory described encompasses both the functional and structural modelcases, and can be implemented using standard software for structuralequations models, such as LISREL, EQS, LISCOMP, among others. An illustration with Monte Carlo data is presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this paper is to compare the performance of twopredictive radiological models, logistic regression (LR) and neural network (NN), with five different resampling methods. One hundred and sixty-seven patients with proven calvarial lesions as the only known disease were enrolled. Clinical and CT data were used for LR and NN models. Both models were developed with cross validation, leave-one-out and three different bootstrap algorithms. The final results of each model were compared with error rate and the area under receiver operating characteristic curves (Az). The neural network obtained statistically higher Az than LR with cross validation. The remaining resampling validation methods did not reveal statistically significant differences between LR and NN rules. The neural network classifier performs better than the one based on logistic regression. This advantage is well detected by three-fold cross-validation, but remains unnoticed when leave-one-out or bootstrap algorithms are used.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La regressió basada en distàncies és un mètode de predicció que consisteix en dos passos: a partir de les distàncies entre observacions obtenim les variables latents, les quals passen a ser els regressors en un model lineal de mínims quadrats ordinaris. Les distàncies les calculem a partir dels predictors originals fent us d'una funció de dissimilaritats adequada. Donat que, en general, els regressors estan relacionats de manera no lineal amb la resposta, la seva selecció amb el test F usual no és possible. En aquest treball proposem una solució a aquest problema de selecció de predictors definint tests estadístics generalitzats i adaptant un mètode de bootstrap no paramètric per a l'estimació dels p-valors. Incluim un exemple numèric amb dades de l'assegurança d'automòbils.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La regressió basada en distàncies és un mètode de predicció que consisteix en dos passos: a partir de les distàncies entre observacions obtenim les variables latents, les quals passen a ser els regressors en un model lineal de mínims quadrats ordinaris. Les distàncies les calculem a partir dels predictors originals fent us d'una funció de dissimilaritats adequada. Donat que, en general, els regressors estan relacionats de manera no lineal amb la resposta, la seva selecció amb el test F usual no és possible. En aquest treball proposem una solució a aquest problema de selecció de predictors definint tests estadístics generalitzats i adaptant un mètode de bootstrap no paramètric per a l'estimació dels p-valors. Incluim un exemple numèric amb dades de l'assegurança d'automòbils.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Peer-reviewed

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study builds on a previous proposal for assigning probabilities to the outcomes computed using different primary indicators in single-case studies. These probabilities are obtained comparing the outcome to previously tabulated reference values and reflect the likelihood of the results in case there was no intervention effect. The current study explores how well different metrics are translated into p values in the context of simulation data. Furthermore, two published multiple baseline data sets are used to illustrate how well the probabilities could reflect the intervention effectiveness as assessed by the original authors. Finally, the importance of which primary indicator is used in each data set to be integrated is explored; two ways of combining probabilities are used: a weighted average and a binomial test. The results indicate that the translation into p values works well for the two nonoverlap procedures, with the results for the regression-based procedure diverging due to some undesirable features of its performance. These p values, both when taken individually and when combined, were well-aligned with the effectiveness for the real-life data. The results suggest that assigning probabilities can be useful for translating the primary measure into the same metric, using these probabilities as additional evidence on the importance of behavioral change, complementing visual analysis and professional's judgments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Markowitz portfolio theory (1952) has induced research into the efficiency of portfolio management. This paper studies existing nonparametric efficiency measurement approaches for single period portfolio selection from a theoretical perspective and generalises currently used efficiency measures into the full mean-variance space. Therefore, we introduce the efficiency improvement possibility function (a variation on the shortage function), study its axiomatic properties in the context of Markowitz efficient frontier, and establish a link to the indirect mean-variance utility function. This framework allows distinguishing between portfolio efficiency and allocative efficiency. Furthermore, it permits retrieving information about the revealed risk aversion of investors. The efficiency improvement possibility function thus provides a more general framework for gauging the efficiency of portfolio management using nonparametric frontier envelopment methods based on quadratic optimisation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This note describes ParallelKnoppix, a bootable CD that allows econometricians with average knowledge of computers to create and begin using a high performance computing cluster for parallel computing in very little time. The computers used may be heterogeneous machines, and clusters of up to 200 nodes are supported. When the cluster is shut down, all machines are in their original state, so their temporary use in the cluster does not interfere with their normal uses. An example shows how a Monte Carlo study of a bootstrap test procedure may be done in parallel. Using a cluster of 20 nodes, the example runs approximately 20 times faster than it does on a single computer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We identify in this paper two conditions that characterize the domain of single-peaked preferences on the line in the following sense: a preference profile satisfies these two properties if and only if there exists a linear order $L$ over the set of alternatives such that these preferences are single-peaked with respect L. The first property states that for any subset of alternatives the set of alternatives considered as the worst by all agents cannot contains more than 2 elements. The second property states that two agents cannot disagree on the relative ranking of two alternatives with respect to a third alternative but agree on the (relative) ranking of a fourth one. Classification-JEL: D71, C78

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the problem of allocating an infinitely divisible commodity among a group of agents with single-peaked preferences. A rule that has played a central role in the analysis of the problem is the so-called uniform rule. Chun (2001) proves that the uniform rule is the only rule satisfying Pareto optimality, no-envy, separability, and continuity (with respect to the social endowment). We obtain an alternative characterization by using a weak replication-invariance condition, called duplication-invariance, instead of continuity. Furthermore, we prove that Pareto optimality, equal division lower bound, and separability imply no-envy. Using this result, we strengthen one of Chun's (2001) characterizations of the uniform rule by showing that the uniform rule is the only rule satisfying Pareto optimality, equal división lower bound, separability, and either continuity or duplication-invariance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Un reto al ejecutar las aplicaciones en un cluster es lograr mejorar las prestaciones utilizando los recursos de manera eficiente, y este reto es mayor al utilizar un ambiente distribuido. Teniendo en cuenta este reto, se proponen un conjunto de reglas para realizar el cómputo en cada uno de los nodos, basado en el análisis de cómputo y comunicaciones de las aplicaciones, se analiza un esquema de mapping de celdas y un método para planificar el orden de ejecución, tomando en consideración la ejecución por prioridad, donde las celdas de fronteras tienen una mayor prioridad con respecto a las celdas internas. En la experimentación se muestra el solapamiento del computo interno con las comunicaciones de las celdas fronteras, obteniendo resultados donde el Speedup aumenta y los niveles de eficiencia se mantienen por encima de un 85%, finalmente se obtiene ganancias de los tiempos de ejecución, concluyendo que si se puede diseñar un esquemas de solapamiento que permita que la ejecución de las aplicaciones SPMD en un cluster se hagan de forma eficiente.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper explores the effects of two main sources of innovation -intramural and external R&D- on the productivity level in a sample of 3,267 Catalonian firms. The data set used is based on the official innovation survey of Catalonia which was a part of the Spanish sample of CIS4, covering the years 2002-2004. We compare empirical results by applying usual OLS and quantile regression techniques both in manufacturing and services industries. In quantile regression, results suggest different patterns at both innovation sources as we move across conditional quantiles. The elasticity of intramural R&D activities on productivity decreased when we move up the high productivity levels both in manufacturing and services sectors, while the effects of external R&D rise in high-technology industries but are more ambiguous in low-technology and knowledge-intensive services. JEL codes: O300, C100, O140. Keywords: Innovation sources, R&D, Productivity, Quantile regression