12 resultados para scanning electron microscope.
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Because of technical principles, samples to be observed with electron microscopy need to be fixed in a chemical process and exposed to vacuum conditions that can produce some changes in the morphology of the specimen. The aim of this work was to obtain high-resolution images of the fresh articular cartilage surface with an environmental scanning electron microscope (ESEM), which is an instrument that permits examination of biological specimens without fixation methods in a 10 Torr chamber pressure, thus minimizing the risk of creating artifacts in the structure. Samples from weight-bearing areas of femoral condyles of New Zealand white rabbits were collected and photographed using an ESEM. Images were analyzed using a categorization based in the Jurvelin classification system modified by Hong and Henderson. Appearance of the observed elevations and depressions as described in the classification were observed, but no fractures or splits of cartilage surface, thought to be artifacts, were detected. The ESEM is a useful tool to obtain images of fresh articular cartilage surface appearance without either employing fixation methods or exposing the specimen to extreme vacuum conditions, reducing the risk of introducing artifacts within the specimen. For all these reasons it could become a useful tool for quality control of the preservation process of osteochondral allografting in a bank of musculoskeletal tissues.
Resumo:
Precession electron diffraction (PED) is a hollow cone non-stationary illumination technique for electron diffraction pattern collection under quasikinematicalconditions (as in X-ray Diffraction), which enables “ab-initio” solving of crystalline structures of nanocrystals. The PED technique is recently used in TEMinstruments of voltages 100 to 300 kV to turn them into true electron iffractometers, thus enabling electron crystallography. The PED technique, when combined with fast electron diffraction acquisition and pattern matching software techniques, may also be used for the high magnification ultra-fast mapping of variable crystal orientations and phases, similarly to what is achieved with the Electron Backscatter Diffraction (EBSD) technique in Scanning ElectronMicroscopes (SEM) at lower magnifications and longer acquisition times.
Resumo:
Nowadays Scanning Electron Microscopy (SEM) is a basic and fundamental tool in the study of geologic samples. The collision of a highlyaccelerated electron beam with the atoms of a solid sample results in theproduction of several radiation types than can be detected and analysed byspecific detectors, providing information of the chemistry and crystallography ofthe studied material. From this point of view, the chamber of a SEM can beconsidered as a laboratory where different experiments can be carried out. Theapplication of SEM to geology, especially in the fields of mineralogy andpetrology has been summarised by Reed (1996).The aim of this paper is to showsome recent applications in the characterization of geologic materials.
Resumo:
This article summarizes the basic principles of scanning electron microscopy and the capabilities of the technique with different examples ofapplications in biomedical and biological research.
Resumo:
A problem in the archaeometric classification of Catalan Renaissance pottery is the fact, thatthe clay supply of the pottery workshops was centrally organized by guilds, and thereforeusually all potters of a single production centre produced chemically similar ceramics.However, analysing the glazes of the ware usually a large number of inclusions in the glaze isfound, which reveal technological differences between single workshops. These inclusionshave been used by the potters in order to opacify the transparent glaze and to achieve a whitebackground for further decoration.In order to distinguish different technological preparation procedures of the single workshops,at a Scanning Electron Microscope the chemical composition of those inclusions as well astheir size in the two-dimensional cut is recorded. Based on the latter, a frequency distributionof the apparent diameters is estimated for each sample and type of inclusion.Following an approach by S.D. Wicksell (1925), it is principally possible to transform thedistributions of the apparent 2D-diameters back to those of the true three-dimensional bodies.The applicability of this approach and its practical problems are examined using differentways of kernel density estimation and Monte-Carlo tests of the methodology. Finally, it istested in how far the obtained frequency distributions can be used to classify the pottery
Resumo:
Capsula and seed morphology of W. European species of Euphorbia aggr. flavicoma has been studied. A total of 1500 seeds coming from 13 taxa have been investigated under light microscope, scanning electron microscope and binocular stereoscope. Data were processed by multivariate analysis and the corresponding dendrogram is presented. At de end of the paper, a key is presented allowing to the separation of taxa down to the species level.
Resumo:
The purpose of the study was to evaluate the shear bond strength of stainless steel orthodontic brackets directly bonded to extracted human premolar teeth. Fifty teeth were randomly divided into ¿ve groups: (1) System One (chemically cured composite resin), (2) Light Bond (light-cured composite resin), (3) Vivaglass Cem (self-curing glass ionomer cement), (4) Fuji Ortho LC (light-cured glass ionomer cement) used after 37% orthophosphoric acid¿etching of enamel (5) Fuji Ortho LC without orthophosphoric acid¿etching. The brackets were placed on the buccal and lingual surfaces of each tooth, and the specimens were stored in distilled water (24 hours) at 378C and thermocycled. Teeth were mounted on acrylic block frames, and brackets were debonded using an Instron machine. Shear bond strength values at fracture (Nw)were recorded. ANOVA and Student-Newman-Keuls multiple comparison tests were performed (P , .05). Bonding failure site was recorded by stereomicroscope and analyzed by Chi-square test, selected specimens of each group were observed by scanning electron microscope. System One attained the highest bond strength. Light Bond and Fuji Ortho LC, when using an acid-etching technique, obtained bond strengths that were within the range of estimated bond strength values for successful clinical bonding. Fuji Ortho LC and Vivaglass Cem left an almost clean enamel surface after debracketing.
Resumo:
This study examines the correlation between buccal dental microwear and stable isotopes. The buccal surface of post-canine teeth casts from El Collado, the largest Mesolithic site in Spain, were examined under Scanning Electron Microscope; photomicrographs were taken from the middle third of the buccal surface with magnification 100X. Only six individuals passed the criteria for buccal dental microwear analysis. The photomicrographs were treated by adobe Photoshop 8.01 to cover an area 0.56 mm² of middle third of buccal surface, the output photomicrographs were digitized using Sigmascan Pro 5 by SPSS. Then the correlation between buccal microwear pattern and stable isotopes of the same individuals, of the previous study of Guixe et al., 2006, was examined using a Pearson test. Statistical analysis revealed that there is no significant correlation between stable isotopes and buccal dental microwear of the people of the Mesolithic site of El Collado. The historical and archaeological documentation suggest that the Mesolithic people tended to consume marine food. Fish-drying techniques were used during the Mesolithic period which allowed the introduction of dust and sand to the fish. These abrasive particles affected the buccal dental microwear pattern, so that no correlation between the isotopes and microwear may be expected. This also suggests that the buccal dental microwear pattern exceeds dietary reconstruction to reconstruct food processing techniques.
Resumo:
This study examines the correlation between buccal dental microwear and stable isotopes. The buccal surface of post-canine teeth casts from El Collado, the largest Mesolithic site in Spain, were examined under Scanning Electron Microscope; photomicrographs were taken from the middle third of the buccal surface with magnification 100X. Only six individuals passed the criteria for buccal dental microwear analysis. The photomicrographs were treated by adobe Photoshop 8.01 to cover an area 0.56 mm² of middle third of buccal surface, the output photomicrographs were digitized using Sigmascan Pro 5 by SPSS. Then the correlation between buccal microwear pattern and stable isotopes of the same individuals, of the previous study of Guixe et al., 2006, was examined using a Pearson test. Statistical analysis revealed that there is no significant correlation between stable isotopes and buccal dental microwear of the people of the Mesolithic site of El Collado. The historical and archaeological documentation suggest that the Mesolithic people tended to consume marine food. Fish-drying techniques were used during the Mesolithic period which allowed the introduction of dust and sand to the fish. These abrasive particles affected the buccal dental microwear pattern, so that no correlation between the isotopes and microwear may be expected. This also suggests that the buccal dental microwear pattern exceeds dietary reconstruction to reconstruct food processing techniques.
Resumo:
Transmission electron microscopy is a proven technique in the field of cell biology and a very useful tool in biomedical research. Innovation and improvements in equipment together with the introduction of new technology have allowed us to improve our knowledge of biological tissues, to visualizestructures better and both to identify and to locate molecules. Of all the types ofmicroscopy exploited to date, electron microscopy is the one with the mostadvantageous resolution limit and therefore it is a very efficient technique fordeciphering the cell architecture and relating it to function. This chapter aims toprovide an overview of the most important techniques that we can apply to abiological sample, tissue or cells, to observe it with an electron microscope, fromthe most conventional to the latest generation. Processes and concepts aredefined, and the advantages and disadvantages of each technique are assessedalong with the image and information that we can obtain by using each one ofthem.
Resumo:
[cat]El present treball ofereix una revisió de les pintures murals de la basílica de «Es Cap des Port» (Fornells, Menorca), així com un estudi de caracterització arqueomètrica deIs materials i tècniques per microscòpia òptica, tant amb lupa binocular com amb microscopi petrogràfic mitjançant làmina prima, difracció de raigs X i microscòpia electrònica de rastreig. Els resultats han permès identificar els pigments emprats, així com la seva tècnica d'aplicació. Igualment, han permès caracteritzar els morters i han desvelat l' existència de dos tipus diferents de suport. Malgrat aquestes diferències en els morters, els pigments són sempre els mateixos per a tots els conjunts pictòrics caracteritzats [eng] The present paper offers a revision of the wall paintings found at the early Christian church of 'Es Cap des Port' (Fornells, Menorca). Moreover, the materials and techniques employed have been archaeometrically studied by means of optical microscopy, both with steromicroscope and petrographic microscope by thin section, X-ray diffraction and scanning electron microscopy. The results enable to identify the pigments used, as well as the techniques of application. It has also been possible to characterize the mortars, revealing the existence of two different types of support. In spite of these differences in the mortars, the pigments used are the same ones for all the studied wall paintings
Resumo:
The time required to image large samples is an important limiting factor in SPM-based systems. In multiprobe setups, especially when working with biological samples, this drawback can make impossible to conduct certain experiments. In this work, we present a feedfordward controller based on bang-bang and adaptive controls. The controls are based in the difference between the maximum speeds that can be used for imaging depending on the flatness of the sample zone. Topographic images of Escherichia coli bacteria samples were acquired using the implemented controllers. Results show that to go faster in the flat zones, rather than using a constant scanning speed for the whole image, speeds up the imaging process of large samples by up to a 4x factor.