8 resultados para savers, vehicle restraint system
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
This paper presents an automatic vision-based system for UUV station keeping. The vehicle is equipped with a down-looking camera, which provides images of the sea-floor. The station keeping system is based on a feature-based motion detection algorithm, which exploits standard correlation and explicit textural analysis to solve the correspondence problem. A visual map of the area surveyed by the vehicle is constructed to increase the flexibility of the system, allowing the vehicle to position itself when it has lost the reference image. The testing platform is the URIS underwater vehicle. Experimental results demonstrating the behavior of the system on a real environment are presented
Resumo:
Autonomous underwater vehicles (AUV) represent a challenging control problem with complex, noisy, dynamics. Nowadays, not only the continuous scientific advances in underwater robotics but the increasing number of subsea missions and its complexity ask for an automatization of submarine processes. This paper proposes a high-level control system for solving the action selection problem of an autonomous robot. The system is characterized by the use of reinforcement learning direct policy search methods (RLDPS) for learning the internal state/action mapping of some behaviors. We demonstrate its feasibility with simulated experiments using the model of our underwater robot URIS in a target following task
Resumo:
This paper deals with the problem of navigation for an unmanned underwater vehicle (UUV) through image mosaicking. It represents a first step towards a real-time vision-based navigation system for a small-class low-cost UUV. We propose a navigation system composed by: (i) an image mosaicking module which provides velocity estimates; and (ii) an extended Kalman filter based on the hydrodynamic equation of motion, previously identified for this particular UUV. The obtained system is able to estimate the position and velocity of the robot. Moreover, it is able to deal with visual occlusions that usually appear when the sea bottom does not have enough visual features to solve the correspondence problem in a certain area of the trajectory
Resumo:
This paper presents a complete control architecture that has been designed to fulfill predefined missions with an autonomous underwater vehicle (AUV). The control architecture has three levels of control: mission level, task level and vehicle level. The novelty of the work resides in the mission level, which is built with a Petri network that defines the sequence of tasks that are executed depending on the unpredictable situations that may occur. The task control system is composed of a set of active behaviours and a coordinator that selects the most appropriate vehicle action at each moment. The paper focuses on the design of the mission controller and its interaction with the task controller. Simulations, inspired on an industrial underwater inspection of a dam grate, show the effectiveness of the control architecture
Resumo:
In a search for new sensor systems and new methods for underwater vehicle positioning based on visual observation, this paper presents a computer vision system based on coded light projection. 3D information is taken from an underwater scene. This information is used to test obstacle avoidance behaviour. In addition, the main ideas for achieving stabilisation of the vehicle in front of an object are presented
Resumo:
En el Centre d'Investigació en Robòtica Submarina (CIRS) de la Universitat de Gironaes disposa de diferents robots submarins els quals utilitzen una arquitectura software anomenada Component Oriented Layered-based Architecture for Autonomy ( COLA2 ), la qual ha estat desenvolupada per estudiants i professors del mateix centre. Per tal de fer aquesta arquitectura més accessible per a professors i estudiant d’altres centres la COLA2 s’està adaptant al Robot Operative System (ROS) que és un framework genèricper al desenvolupament d’aplicacions amb robots. Aquest projecte pretén dissenyar un comportament per al robot Girona500 que estigui desenvolupat dins la versió ROS de l’arquitectura COLA2. El comportament haurà de fer mantenir una determinada posició al robot amb informació visual de la càmera del robot i amb dades de navegació. La tasca de mantenir la posició es de vital importància per a poder realitzar intervencions submarines que requereixen de precisió i, precisament, el medi on es treballa no ajuda
Resumo:
Mosaics have been commonly used as visual maps for undersea exploration and navigation. The position and orientation of an underwater vehicle can be calculated by integrating the apparent motion of the images which form the mosaic. A feature-based mosaicking method is proposed in this paper. The creation of the mosaic is accomplished in four stages: feature selection and matching, detection of points describing the dominant motion, homography computation and mosaic construction. In this work we demonstrate that the use of color and textures as discriminative properties of the image can improve, to a large extent, the accuracy of the constructed mosaic. The system is able to provide 3D metric information concerning the vehicle motion using the knowledge of the intrinsic parameters of the camera while integrating the measurements of an ultrasonic sensor. The experimental results of real images have been tested on the GARBI underwater vehicle
Resumo:
Nessie is an Autonomous Underwater Vehicle (AUV) created by a team of students in the Heriot Watt University to compete in the Student Autonomous Underwater Competition, Europe (SAUC-E) in August 2006. The main objective of the project is to find the dynamic equation of the robot, dynamic model. With it, the behaviour of the robot will be easier to understand and movement tests will be available by computer without the need of the robot, what is a way to save time, batteries, money and the robot from water inside itself. The object of the second part in this project is setting a control system for Nessie by using the model