4 resultados para reconfiguration
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Postprint (published version)
Resumo:
Els eixams de robots distribuïts representen tot un món de possibilitats al camp de la microrobòtica, però existeixen pocs estudis que n'analitzin els comportaments socials i les interaccions entre robots autònoms distribuïts. Aquests comportaments han de permetre assolir de la manera més efectiva possible un bon resultat. Prenent com a base l'objectiu esmentat, aquest treball detalla diferents polítiques de cerca i de reconfiguració dels robots i estudia els seus comportaments per tal de determinar quins d'ells són més útils per solucionar un problema concret amb les plagues d'erugues i corcs als camps de cigroneres.
Resumo:
The paper focuses on taking advantage of large amounts of data that are systematically stored in plants (by means of SCADA systems), but not exploited enough in order to achieve supervisory goals (fault detection, diagnosis and reconfiguration). The methodology of case base reasoning (CBR) is proposed to perform supervisory tasks in industrial processes by re-using the stored data. The goal is to take advantage of experiences, registered in a suitable structure as cam, avoiding the tedious task of knowledge acquisition and representation needed by other reasoning techniques as expert systems. An outlook of CBR terminology and basic concepts are presented. The adaptation of CBR in performing expert supervisory tasks, taking into account the particularities and difficulties derived from dynamic systems, is discussed. A special interest is focused in proposing a general case definition suitable for supervisory tasks. Finally, this structure and the whole methodology is tested in a application example for monitoring a real drier chamber
Resumo:
The speed of fault isolation is crucial for the design and reconfiguration of fault tolerant control (FTC). In this paper the fault isolation problem is stated as a constraint satisfaction problem (CSP) and solved using constraint propagation techniques. The proposed method is based on constraint satisfaction techniques and uncertainty space refining of interval parameters. In comparison with other approaches based on adaptive observers, the major advantage of the presented method is that the isolation speed is fast even taking into account uncertainty in parameters, measurements and model errors and without the monotonicity assumption. In order to illustrate the proposed approach, a case study of a nonlinear dynamic system is presented