4 resultados para process parameter data
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
In this work we present a simulation of a recognition process with perimeter characterization of a simple plant leaves as a unique discriminating parameter. Data coding allowing for independence of leaves size and orientation may penalize performance recognition for some varieties. Border description sequences are then used, and Principal Component Analysis (PCA) is applied in order to study which is the best number of components for the classification task, implemented by means of a Support Vector Machine (SVM) System. Obtained results are satisfactory, and compared with [4] our system improves the recognition success, diminishing the variance at the same time.
Resumo:
Projecte de recerca elaborat a partir d’una estada a la National Oceanography Centre of Southampton (NOCS), Gran Bretanya, entre maig i juliol del 2006. La possibilitat d’obtenir una estimació precissa de la salinitat marina (SSS) és important per a investigar i predir l’extensió del fenòmen del canvi climàtic. La missió Soil Moisture and Ocean Salinity (SMOS) va ser seleccionada per l’Agència Espacial Europea (ESA) per a obtenir mapes de salinitat de la superfície marina a escala global i amb un temps de revisita petit. Abans del llençament de SMOS es preveu l’anàlisi de la variabilitat horitzontal de la SSS i del potencial de les dades recuperades a partir de mesures de SMOS per a reproduir comportaments oceanogràfics coneguts. L’objectiu de tot plegat és emplenar el buit existent entre les fonts de dades d’entrada/auxiliars fiables i les eines desenvolupades per a simular i processar les dades adquirides segons la configuració de SMOS. El SMOS End-to-end Performance Simulator (SEPS) és un simulador adhoc desenvolupat per la Universitat Politècnica de Catalunya (UPC) per a generar dades segons la configuració de SMOS. Es va utilitzar dades d’entrada a SEPS procedents del projecte Ocean Circulation and Climate Advanced Modeling (OCCAM), utilitzat al NOCS, a diferents resolucions espacials. Modificant SEPS per a poder fer servir com a entrada les dades OCCAM es van obtenir dades de temperatura de brillantor simulades durant un mes amb diferents observacions ascendents que cobrien la zona seleccionada. Les tasques realitzades durant l’estada a NOCS tenien la finalitat de proporcionar una tècnica fiable per a realitzar la calibració externa i per tant cancel•lar el bias, una metodologia per a promitjar temporalment les diferents adquisicions durant les observacions ascendents, i determinar la millor configuració de la funció de cost abans d’explotar i investigar les posibiltats de les dades SEPS/OCCAM per a derivar la SSS recuperada amb patrons d’alta resolució.
Resumo:
While much of the literature on immigrants' assimilation has focused on countries with a large tradition of receiving immigrants and with flexible labor markets, very little is known on how immigrants adjust to other types of host economies. With its severe dual labor market, and an unprecedented immigration boom, Spain presents a quite unique experience to analyze immigrations' assimilation process. Using data from the 2000 to 2008 Labor Force Survey, we find that immigrants are more occupationally mobile than natives, and that much of this greater flexibility is explained by immigrants' assimilation process soon after arrival. However, we find little evidence of convergence, especially among women and high skilled immigrants. This suggests that instead of integrating, immigrants occupationally segregate, providing evidence consistent with both imperfect substitutability and immigrants' human capital being under-valued. Additional evidence on the assimilation of earnings and the incidence of permanent employment by different skill levels also supports the hypothesis of segmented labor markets.
Resumo:
In this work we present a simulation of a recognition process with perimeter characterization of a simple plant leaves as a unique discriminating parameter. Data coding allowing for independence of leaves size and orientation may penalize performance recognition for some varieties. Border description sequences are then used to characterize the leaves. Independent Component Analysis (ICA) is then applied in order to study which is the best number of components to be considered for the classification task, implemented by means of an Artificial Neural Network (ANN). Obtained results with ICA as a pre-processing tool are satisfactory, and compared with some references our system improves the recognition success up to 80.8% depending on the number of considered independent components.